神经成像数据中行为相关时空模式的动态建模。

ArXiv Pub Date : 2025-09-23
Mohammad Hosseini, Maryam M Shanechi
{"title":"神经成像数据中行为相关时空模式的动态建模。","authors":"Mohammad Hosseini, Maryam M Shanechi","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>High-dimensional imaging of neural activity, such as widefield calcium and functional ultrasound imaging, provide a rich source of information for understanding the relationship between brain activity and behavior. Accurately modeling neural dynamics in these modalities is crucial for understanding this relationship but is hindered by the high-dimensionality, complex spatiotemporal dependencies, and prevalent behaviorally irrelevant dynamics in these modalities. Existing dynamical models often employ preprocessing steps to obtain low-dimensional representations from neural image modalities. However, this process can discard behaviorally relevant information and miss spatiotemporal structure. We propose SBIND, a novel data-driven deep learning framework to model spatiotemporal dependencies in neural images and disentangle their behaviorally relevant dynamics from other neural dynamics. We validate SBIND on widefield imaging datasets, and show its extension to functional ultrasound imaging, a recent modality whose dynamical modeling has largely remained unexplored. We find that our model effectively identifies both local and long-range spatial dependencies across the brain while also dissociating behaviorally relevant neural dynamics. Doing so, SBIND outperforms existing models in neural-behavioral prediction. Overall, SBIND provides a versatile tool for investigating the neural mechanisms underlying behavior using imaging modalities.</p>","PeriodicalId":93888,"journal":{"name":"ArXiv","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12486059/pdf/","citationCount":"0","resultStr":"{\"title\":\"Dynamical Modeling of Behaviorally Relevant Spatiotemporal Patterns in Neural Imaging Data.\",\"authors\":\"Mohammad Hosseini, Maryam M Shanechi\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>High-dimensional imaging of neural activity, such as widefield calcium and functional ultrasound imaging, provide a rich source of information for understanding the relationship between brain activity and behavior. Accurately modeling neural dynamics in these modalities is crucial for understanding this relationship but is hindered by the high-dimensionality, complex spatiotemporal dependencies, and prevalent behaviorally irrelevant dynamics in these modalities. Existing dynamical models often employ preprocessing steps to obtain low-dimensional representations from neural image modalities. However, this process can discard behaviorally relevant information and miss spatiotemporal structure. We propose SBIND, a novel data-driven deep learning framework to model spatiotemporal dependencies in neural images and disentangle their behaviorally relevant dynamics from other neural dynamics. We validate SBIND on widefield imaging datasets, and show its extension to functional ultrasound imaging, a recent modality whose dynamical modeling has largely remained unexplored. We find that our model effectively identifies both local and long-range spatial dependencies across the brain while also dissociating behaviorally relevant neural dynamics. Doing so, SBIND outperforms existing models in neural-behavioral prediction. Overall, SBIND provides a versatile tool for investigating the neural mechanisms underlying behavior using imaging modalities.</p>\",\"PeriodicalId\":93888,\"journal\":{\"name\":\"ArXiv\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12486059/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ArXiv\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

神经活动的高维成像,如宽视场钙成像和功能超声成像,为理解大脑活动和行为之间的关系提供了丰富的信息来源。在这些模式中准确地建模神经动力学对于理解这种关系至关重要,但这些模式中的高维性、复杂的时空依赖性和普遍的行为无关动力学阻碍了神经动力学的发展。现有的动态模型通常采用预处理步骤从神经图像模态中获得低维表示。然而,这一过程可能会丢弃与行为相关的信息,并错过时空结构。我们提出了一种新的数据驱动深度学习框架SBIND,用于模拟神经图像中的时空依赖关系,并将其行为相关动态与其他神经动力学分离开来。我们在宽视场成像数据集上验证了SBIND,并将其扩展到功能性超声成像,这是一种最新的模式,其动态建模在很大程度上仍未被探索。我们发现我们的模型有效地识别了局部和远距离的空间依赖关系,同时也分离了行为相关的神经动力学。这样,SBIND在神经行为预测方面优于现有的模型。总的来说,SBIND提供了一个多功能的工具,用于研究使用成像模式的行为背后的神经机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamical Modeling of Behaviorally Relevant Spatiotemporal Patterns in Neural Imaging Data.

High-dimensional imaging of neural activity, such as widefield calcium and functional ultrasound imaging, provide a rich source of information for understanding the relationship between brain activity and behavior. Accurately modeling neural dynamics in these modalities is crucial for understanding this relationship but is hindered by the high-dimensionality, complex spatiotemporal dependencies, and prevalent behaviorally irrelevant dynamics in these modalities. Existing dynamical models often employ preprocessing steps to obtain low-dimensional representations from neural image modalities. However, this process can discard behaviorally relevant information and miss spatiotemporal structure. We propose SBIND, a novel data-driven deep learning framework to model spatiotemporal dependencies in neural images and disentangle their behaviorally relevant dynamics from other neural dynamics. We validate SBIND on widefield imaging datasets, and show its extension to functional ultrasound imaging, a recent modality whose dynamical modeling has largely remained unexplored. We find that our model effectively identifies both local and long-range spatial dependencies across the brain while also dissociating behaviorally relevant neural dynamics. Doing so, SBIND outperforms existing models in neural-behavioral prediction. Overall, SBIND provides a versatile tool for investigating the neural mechanisms underlying behavior using imaging modalities.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信