Silvia Noirjean, Daniele Bottigliengo, Elisa Cinconze, Ali Charkhi, Toufik Zahaf, Fan Li, Andrea Callegaro
{"title":"在疫苗效力研究中实施ICH E9 (R1)附录:假设和主要阶层策略。","authors":"Silvia Noirjean, Daniele Bottigliengo, Elisa Cinconze, Ali Charkhi, Toufik Zahaf, Fan Li, Andrea Callegaro","doi":"10.1080/10543406.2025.2547588","DOIUrl":null,"url":null,"abstract":"<p><p>Over the past decades, the primary interest in vaccine efficacy evaluation has mostly been on the effect observed in trial participants complying with the protocol requirements (per protocol analysis). The ICH E9 (R1) addendum provides a structured framework to formulate the clinical questions of interest and formalize them as estimands. In this paper, the estimand framework is retrospectively implemented in a human papillomavirus (HPV) phase 3 trial, where the vaccine efficacy was originally estimated on the per protocol set. We focus on two strategies for dealing with the presence of intercurrent events: the hypothetical and the principal stratum strategies. We address the interpretation of these two estimands, their estimation as well as articulation of the underlying identifiability assumptions. Finally, we leverage the results of the HPV application to formulate general considerations regarding the implementation of the ICH E9 (R1) addendum in vaccine efficacy studies.</p>","PeriodicalId":54870,"journal":{"name":"Journal of Biopharmaceutical Statistics","volume":" ","pages":"1-18"},"PeriodicalIF":1.2000,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Implementation of the ICH E9 (R1) addendum in vaccine efficacy studies: the hypothetical and principal stratum strategies.\",\"authors\":\"Silvia Noirjean, Daniele Bottigliengo, Elisa Cinconze, Ali Charkhi, Toufik Zahaf, Fan Li, Andrea Callegaro\",\"doi\":\"10.1080/10543406.2025.2547588\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Over the past decades, the primary interest in vaccine efficacy evaluation has mostly been on the effect observed in trial participants complying with the protocol requirements (per protocol analysis). The ICH E9 (R1) addendum provides a structured framework to formulate the clinical questions of interest and formalize them as estimands. In this paper, the estimand framework is retrospectively implemented in a human papillomavirus (HPV) phase 3 trial, where the vaccine efficacy was originally estimated on the per protocol set. We focus on two strategies for dealing with the presence of intercurrent events: the hypothetical and the principal stratum strategies. We address the interpretation of these two estimands, their estimation as well as articulation of the underlying identifiability assumptions. Finally, we leverage the results of the HPV application to formulate general considerations regarding the implementation of the ICH E9 (R1) addendum in vaccine efficacy studies.</p>\",\"PeriodicalId\":54870,\"journal\":{\"name\":\"Journal of Biopharmaceutical Statistics\",\"volume\":\" \",\"pages\":\"1-18\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biopharmaceutical Statistics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/10543406.2025.2547588\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biopharmaceutical Statistics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10543406.2025.2547588","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Implementation of the ICH E9 (R1) addendum in vaccine efficacy studies: the hypothetical and principal stratum strategies.
Over the past decades, the primary interest in vaccine efficacy evaluation has mostly been on the effect observed in trial participants complying with the protocol requirements (per protocol analysis). The ICH E9 (R1) addendum provides a structured framework to formulate the clinical questions of interest and formalize them as estimands. In this paper, the estimand framework is retrospectively implemented in a human papillomavirus (HPV) phase 3 trial, where the vaccine efficacy was originally estimated on the per protocol set. We focus on two strategies for dealing with the presence of intercurrent events: the hypothetical and the principal stratum strategies. We address the interpretation of these two estimands, their estimation as well as articulation of the underlying identifiability assumptions. Finally, we leverage the results of the HPV application to formulate general considerations regarding the implementation of the ICH E9 (R1) addendum in vaccine efficacy studies.
期刊介绍:
The Journal of Biopharmaceutical Statistics, a rapid publication journal, discusses quality applications of statistics in biopharmaceutical research and development. Now publishing six times per year, it includes expositions of statistical methodology with immediate applicability to biopharmaceutical research in the form of full-length and short manuscripts, review articles, selected/invited conference papers, short articles, and letters to the editor. Addressing timely and provocative topics important to the biostatistical profession, the journal covers:
Drug, device, and biological research and development;
Drug screening and drug design;
Assessment of pharmacological activity;
Pharmaceutical formulation and scale-up;
Preclinical safety assessment;
Bioavailability, bioequivalence, and pharmacokinetics;
Phase, I, II, and III clinical development including complex innovative designs;
Premarket approval assessment of clinical safety;
Postmarketing surveillance;
Big data and artificial intelligence and applications.