casp16实验蛋白配体数据集。

IF 2.8 4区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Andreas Tosstorff, Markus G Rudolph, Jörg Benz, Bernd Kuhn, Christian Kramer, May Sharpe, Chia-Ying Huang, Alexander Metz, Julien Hazemann, Daniel Ritz, Aengus Mac Sweeney, Michael K Gilson
{"title":"casp16实验蛋白配体数据集。","authors":"Andreas Tosstorff, Markus G Rudolph, Jörg Benz, Bernd Kuhn, Christian Kramer, May Sharpe, Chia-Ying Huang, Alexander Metz, Julien Hazemann, Daniel Ritz, Aengus Mac Sweeney, Michael K Gilson","doi":"10.1002/prot.70053","DOIUrl":null,"url":null,"abstract":"<p><p>This paper presents the experimental protein-ligand datasets used as benchmarks in the CASP 16 blind prediction experiment-the first CASP round to incorporate targets from pharmaceutical discovery projects. We have assembled and characterized protein-ligand complexes for four proteins that are known or candidate drug targets: human chymase, human cathepsin G, human autotaxin, and the SARS-CoV-2 main protease. The collection encompasses over 200 co-crystal structures at resolutions better than 2.7 Å, paired with binding affinity measurements for approximately 160 compounds covering a broad affinity range (nanomolar to high micromolar). These data enabled the CASP16 pose-prediction and affinity-prediction challenges. Many systems feature potentially challenging characteristics, including chymase's electropositive surface and acidic ligands, which require proper handling of titratable ligand groups; autotaxin complexes with and without zinc coordination; and a SARS-CoV-2 protease crystal form exhibiting an unusually open active site conformation. We describe the experimental approaches-from protein production and crystallization to binding assay development-that yielded these reference data. Contributed by scientists at F. Hoffmann-La Roche and Idorsia Pharmaceuticals, these datasets represent actual drug discovery projects and therefore provide a realistic testbed for assessing how computational methods perform on pharmaceutically relevant targets. An accompanying paper in the present special journal issue provides a comprehensive assessment of the pose and affinity predictions for these pharmaceutical protein-ligand systems.</p>","PeriodicalId":56271,"journal":{"name":"Proteins-Structure Function and Bioinformatics","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The CASP 16 Experimental Protein-Ligand Datasets.\",\"authors\":\"Andreas Tosstorff, Markus G Rudolph, Jörg Benz, Bernd Kuhn, Christian Kramer, May Sharpe, Chia-Ying Huang, Alexander Metz, Julien Hazemann, Daniel Ritz, Aengus Mac Sweeney, Michael K Gilson\",\"doi\":\"10.1002/prot.70053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This paper presents the experimental protein-ligand datasets used as benchmarks in the CASP 16 blind prediction experiment-the first CASP round to incorporate targets from pharmaceutical discovery projects. We have assembled and characterized protein-ligand complexes for four proteins that are known or candidate drug targets: human chymase, human cathepsin G, human autotaxin, and the SARS-CoV-2 main protease. The collection encompasses over 200 co-crystal structures at resolutions better than 2.7 Å, paired with binding affinity measurements for approximately 160 compounds covering a broad affinity range (nanomolar to high micromolar). These data enabled the CASP16 pose-prediction and affinity-prediction challenges. Many systems feature potentially challenging characteristics, including chymase's electropositive surface and acidic ligands, which require proper handling of titratable ligand groups; autotaxin complexes with and without zinc coordination; and a SARS-CoV-2 protease crystal form exhibiting an unusually open active site conformation. We describe the experimental approaches-from protein production and crystallization to binding assay development-that yielded these reference data. Contributed by scientists at F. Hoffmann-La Roche and Idorsia Pharmaceuticals, these datasets represent actual drug discovery projects and therefore provide a realistic testbed for assessing how computational methods perform on pharmaceutically relevant targets. An accompanying paper in the present special journal issue provides a comprehensive assessment of the pose and affinity predictions for these pharmaceutical protein-ligand systems.</p>\",\"PeriodicalId\":56271,\"journal\":{\"name\":\"Proteins-Structure Function and Bioinformatics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proteins-Structure Function and Bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/prot.70053\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proteins-Structure Function and Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/prot.70053","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了作为CASP 16盲预测实验基准的实验蛋白质配体数据集,这是CASP第一轮纳入药物发现项目靶点的实验。我们已经组装并表征了已知或候选药物靶点的四种蛋白质的蛋白质配体复合物:人切酶、人组织蛋白酶G、人自噬素和SARS-CoV-2主要蛋白酶。该集合包含超过200个共晶结构,分辨率优于2.7 Å,并与大约160个化合物的结合亲和力测量相匹配,覆盖了广泛的亲和力范围(纳摩尔到高微摩尔)。这些数据使CASP16姿势预测和亲和预测挑战成为可能。许多系统具有潜在的挑战性特征,包括乳糜酶的正电表面和酸性配体,这需要适当处理可滴定的配体基团;具有和不具有锌配位的Autotaxin配合物;SARS-CoV-2蛋白酶晶体形态表现出异常开放的活性位点构象。我们描述了实验方法-从蛋白质生产和结晶结合分析开发-产生这些参考数据。这些数据集由F. Hoffmann-La Roche和Idorsia制药公司的科学家提供,代表了实际的药物发现项目,因此为评估计算方法在药物相关目标上的表现提供了一个现实的测试平台。在本特刊的一篇随附论文提供了这些药物蛋白质配体系统的姿态和亲和力预测的全面评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The CASP 16 Experimental Protein-Ligand Datasets.

This paper presents the experimental protein-ligand datasets used as benchmarks in the CASP 16 blind prediction experiment-the first CASP round to incorporate targets from pharmaceutical discovery projects. We have assembled and characterized protein-ligand complexes for four proteins that are known or candidate drug targets: human chymase, human cathepsin G, human autotaxin, and the SARS-CoV-2 main protease. The collection encompasses over 200 co-crystal structures at resolutions better than 2.7 Å, paired with binding affinity measurements for approximately 160 compounds covering a broad affinity range (nanomolar to high micromolar). These data enabled the CASP16 pose-prediction and affinity-prediction challenges. Many systems feature potentially challenging characteristics, including chymase's electropositive surface and acidic ligands, which require proper handling of titratable ligand groups; autotaxin complexes with and without zinc coordination; and a SARS-CoV-2 protease crystal form exhibiting an unusually open active site conformation. We describe the experimental approaches-from protein production and crystallization to binding assay development-that yielded these reference data. Contributed by scientists at F. Hoffmann-La Roche and Idorsia Pharmaceuticals, these datasets represent actual drug discovery projects and therefore provide a realistic testbed for assessing how computational methods perform on pharmaceutically relevant targets. An accompanying paper in the present special journal issue provides a comprehensive assessment of the pose and affinity predictions for these pharmaceutical protein-ligand systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Proteins-Structure Function and Bioinformatics
Proteins-Structure Function and Bioinformatics 生物-生化与分子生物学
CiteScore
5.90
自引率
3.40%
发文量
172
审稿时长
3 months
期刊介绍: PROTEINS : Structure, Function, and Bioinformatics publishes original reports of significant experimental and analytic research in all areas of protein research: structure, function, computation, genetics, and design. The journal encourages reports that present new experimental or computational approaches for interpreting and understanding data from biophysical chemistry, structural studies of proteins and macromolecular assemblies, alterations of protein structure and function engineered through techniques of molecular biology and genetics, functional analyses under physiologic conditions, as well as the interactions of proteins with receptors, nucleic acids, or other specific ligands or substrates. Research in protein and peptide biochemistry directed toward synthesizing or characterizing molecules that simulate aspects of the activity of proteins, or that act as inhibitors of protein function, is also within the scope of PROTEINS. In addition to full-length reports, short communications (usually not more than 4 printed pages) and prediction reports are welcome. Reviews are typically by invitation; authors are encouraged to submit proposed topics for consideration.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信