具有无限Cop数的紧度量空间。

IF 0.6 3区 数学 Q4 COMPUTER SCIENCE, THEORY & METHODS
Discrete & Computational Geometry Pub Date : 2025-01-01 Epub Date: 2024-10-14 DOI:10.1007/s00454-024-00696-0
Agelos Georgakopoulos
{"title":"具有无限Cop数的紧度量空间。","authors":"Agelos Georgakopoulos","doi":"10.1007/s00454-024-00696-0","DOIUrl":null,"url":null,"abstract":"<p><p>Mohar recently adapted the classical game of Cops and Robber from graphs to metric spaces, thereby unifying previously studied pursuit-evasion games. He conjectured that finitely many cops can win on any compact geodesic metric space, and that their number can be upper-bounded in terms of the ranks of the homology groups when the space is a simplicial pseudo-manifold. We disprove these conjectures by constructing a metric on <math> <msup><mrow><mi>S</mi></mrow> <mn>3</mn></msup> </math> with infinite cop number. More problems are raised than settled.</p>","PeriodicalId":50574,"journal":{"name":"Discrete & Computational Geometry","volume":"74 3","pages":"793-804"},"PeriodicalIF":0.6000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12484412/pdf/","citationCount":"0","resultStr":"{\"title\":\"Compact Metric Spaces with Infinite Cop Number.\",\"authors\":\"Agelos Georgakopoulos\",\"doi\":\"10.1007/s00454-024-00696-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mohar recently adapted the classical game of Cops and Robber from graphs to metric spaces, thereby unifying previously studied pursuit-evasion games. He conjectured that finitely many cops can win on any compact geodesic metric space, and that their number can be upper-bounded in terms of the ranks of the homology groups when the space is a simplicial pseudo-manifold. We disprove these conjectures by constructing a metric on <math> <msup><mrow><mi>S</mi></mrow> <mn>3</mn></msup> </math> with infinite cop number. More problems are raised than settled.</p>\",\"PeriodicalId\":50574,\"journal\":{\"name\":\"Discrete & Computational Geometry\",\"volume\":\"74 3\",\"pages\":\"793-804\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12484412/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete & Computational Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00454-024-00696-0\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/14 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete & Computational Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00454-024-00696-0","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/14 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

Mohar最近将经典的“警察和强盗”游戏从图形改编为度量空间,从而统一了先前研究的追捕-逃避游戏。他推测在任何紧致测地线度量空间上都可以有有限个条子,并且当空间是一个简单伪流形时,它们的数目可以根据同调群的秩上界。我们通过构造一个具有无限cop数的s3上的度量来反驳这些猜想。提出的问题比解决的问题多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Compact Metric Spaces with Infinite Cop Number.

Compact Metric Spaces with Infinite Cop Number.

Mohar recently adapted the classical game of Cops and Robber from graphs to metric spaces, thereby unifying previously studied pursuit-evasion games. He conjectured that finitely many cops can win on any compact geodesic metric space, and that their number can be upper-bounded in terms of the ranks of the homology groups when the space is a simplicial pseudo-manifold. We disprove these conjectures by constructing a metric on S 3 with infinite cop number. More problems are raised than settled.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete & Computational Geometry
Discrete & Computational Geometry 数学-计算机:理论方法
CiteScore
1.80
自引率
12.50%
发文量
99
审稿时长
6-12 weeks
期刊介绍: Discrete & Computational Geometry (DCG) is an international journal of mathematics and computer science, covering a broad range of topics in which geometry plays a fundamental role. It publishes papers on such topics as configurations and arrangements, spatial subdivision, packing, covering, and tiling, geometric complexity, polytopes, point location, geometric probability, geometric range searching, combinatorial and computational topology, probabilistic techniques in computational geometry, geometric graphs, geometry of numbers, and motion planning.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信