{"title":"具有无限Cop数的紧度量空间。","authors":"Agelos Georgakopoulos","doi":"10.1007/s00454-024-00696-0","DOIUrl":null,"url":null,"abstract":"<p><p>Mohar recently adapted the classical game of Cops and Robber from graphs to metric spaces, thereby unifying previously studied pursuit-evasion games. He conjectured that finitely many cops can win on any compact geodesic metric space, and that their number can be upper-bounded in terms of the ranks of the homology groups when the space is a simplicial pseudo-manifold. We disprove these conjectures by constructing a metric on <math> <msup><mrow><mi>S</mi></mrow> <mn>3</mn></msup> </math> with infinite cop number. More problems are raised than settled.</p>","PeriodicalId":50574,"journal":{"name":"Discrete & Computational Geometry","volume":"74 3","pages":"793-804"},"PeriodicalIF":0.6000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12484412/pdf/","citationCount":"0","resultStr":"{\"title\":\"Compact Metric Spaces with Infinite Cop Number.\",\"authors\":\"Agelos Georgakopoulos\",\"doi\":\"10.1007/s00454-024-00696-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mohar recently adapted the classical game of Cops and Robber from graphs to metric spaces, thereby unifying previously studied pursuit-evasion games. He conjectured that finitely many cops can win on any compact geodesic metric space, and that their number can be upper-bounded in terms of the ranks of the homology groups when the space is a simplicial pseudo-manifold. We disprove these conjectures by constructing a metric on <math> <msup><mrow><mi>S</mi></mrow> <mn>3</mn></msup> </math> with infinite cop number. More problems are raised than settled.</p>\",\"PeriodicalId\":50574,\"journal\":{\"name\":\"Discrete & Computational Geometry\",\"volume\":\"74 3\",\"pages\":\"793-804\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12484412/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete & Computational Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00454-024-00696-0\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/14 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete & Computational Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00454-024-00696-0","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/14 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Mohar recently adapted the classical game of Cops and Robber from graphs to metric spaces, thereby unifying previously studied pursuit-evasion games. He conjectured that finitely many cops can win on any compact geodesic metric space, and that their number can be upper-bounded in terms of the ranks of the homology groups when the space is a simplicial pseudo-manifold. We disprove these conjectures by constructing a metric on with infinite cop number. More problems are raised than settled.
期刊介绍:
Discrete & Computational Geometry (DCG) is an international journal of mathematics and computer science, covering a broad range of topics in which geometry plays a fundamental role. It publishes papers on such topics as configurations and arrangements, spatial subdivision, packing, covering, and tiling, geometric complexity, polytopes, point location, geometric probability, geometric range searching, combinatorial and computational topology, probabilistic techniques in computational geometry, geometric graphs, geometry of numbers, and motion planning.