Lech Duraj, Ross J Kang, Hoang La, Jonathan Narboni, Filip Pokrývka, Clément Rambaud, Amadeus Reinald
{"title":"d向线段图的χ -绑定函数。","authors":"Lech Duraj, Ross J Kang, Hoang La, Jonathan Narboni, Filip Pokrývka, Clément Rambaud, Amadeus Reinald","doi":"10.1007/s00454-025-00737-2","DOIUrl":null,"url":null,"abstract":"<p><p>Given a positive integer <i>d</i>, the class <i>d</i>-DIR is defined as all those intersection graphs formed from a finite collection of line segments in <math> <msup><mrow><mi>R</mi></mrow> <mn>2</mn></msup> </math> having at most <i>d</i> slopes. Since each slope induces an interval graph, it easily follows for every <i>G</i> in <i>d</i>-DIR with clique number at most <math><mi>ω</mi></math> that the chromatic number <math><mrow><mi>χ</mi> <mo>(</mo> <mi>G</mi> <mo>)</mo></mrow> </math> of <i>G</i> is at most <math><mrow><mi>d</mi> <mi>ω</mi></mrow> </math> . We show for every even value of <math><mi>ω</mi></math> how to construct a graph in <i>d</i>-DIR that meets this bound exactly. This partially confirms a conjecture of Bhattacharya, Dvořák and Noorizadeh. Furthermore, we show that the <math><mi>χ</mi></math> -binding function of <i>d</i>-DIR is <math><mrow><mi>ω</mi> <mo>↦</mo> <mi>d</mi> <mi>ω</mi></mrow> </math> for <math><mi>ω</mi></math> even and <math><mrow><mi>ω</mi> <mo>↦</mo> <mi>d</mi> <mo>(</mo> <mi>ω</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> <mo>+</mo> <mn>1</mn></mrow> </math> for <math><mi>ω</mi></math> odd. This extends an earlier result by Kostochka and Nešetřil, which treated the special case <math><mrow><mi>d</mi> <mo>=</mo> <mn>2</mn></mrow> </math> .</p>","PeriodicalId":50574,"journal":{"name":"Discrete & Computational Geometry","volume":"74 3","pages":"758-770"},"PeriodicalIF":0.6000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12484362/pdf/","citationCount":"0","resultStr":"{\"title\":\"<ArticleTitle xmlns:ns0=\\\"http://www.w3.org/1998/Math/MathML\\\">The <ns0:math><ns0:mi>χ</ns0:mi></ns0:math> -Binding Function of <i>d</i>-Directional Segment Graphs.\",\"authors\":\"Lech Duraj, Ross J Kang, Hoang La, Jonathan Narboni, Filip Pokrývka, Clément Rambaud, Amadeus Reinald\",\"doi\":\"10.1007/s00454-025-00737-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Given a positive integer <i>d</i>, the class <i>d</i>-DIR is defined as all those intersection graphs formed from a finite collection of line segments in <math> <msup><mrow><mi>R</mi></mrow> <mn>2</mn></msup> </math> having at most <i>d</i> slopes. Since each slope induces an interval graph, it easily follows for every <i>G</i> in <i>d</i>-DIR with clique number at most <math><mi>ω</mi></math> that the chromatic number <math><mrow><mi>χ</mi> <mo>(</mo> <mi>G</mi> <mo>)</mo></mrow> </math> of <i>G</i> is at most <math><mrow><mi>d</mi> <mi>ω</mi></mrow> </math> . We show for every even value of <math><mi>ω</mi></math> how to construct a graph in <i>d</i>-DIR that meets this bound exactly. This partially confirms a conjecture of Bhattacharya, Dvořák and Noorizadeh. Furthermore, we show that the <math><mi>χ</mi></math> -binding function of <i>d</i>-DIR is <math><mrow><mi>ω</mi> <mo>↦</mo> <mi>d</mi> <mi>ω</mi></mrow> </math> for <math><mi>ω</mi></math> even and <math><mrow><mi>ω</mi> <mo>↦</mo> <mi>d</mi> <mo>(</mo> <mi>ω</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> <mo>+</mo> <mn>1</mn></mrow> </math> for <math><mi>ω</mi></math> odd. This extends an earlier result by Kostochka and Nešetřil, which treated the special case <math><mrow><mi>d</mi> <mo>=</mo> <mn>2</mn></mrow> </math> .</p>\",\"PeriodicalId\":50574,\"journal\":{\"name\":\"Discrete & Computational Geometry\",\"volume\":\"74 3\",\"pages\":\"758-770\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12484362/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete & Computational Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00454-025-00737-2\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/5/17 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete & Computational Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00454-025-00737-2","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/17 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
The χ -Binding Function of d-Directional Segment Graphs.
Given a positive integer d, the class d-DIR is defined as all those intersection graphs formed from a finite collection of line segments in having at most d slopes. Since each slope induces an interval graph, it easily follows for every G in d-DIR with clique number at most that the chromatic number of G is at most . We show for every even value of how to construct a graph in d-DIR that meets this bound exactly. This partially confirms a conjecture of Bhattacharya, Dvořák and Noorizadeh. Furthermore, we show that the -binding function of d-DIR is for even and for odd. This extends an earlier result by Kostochka and Nešetřil, which treated the special case .
期刊介绍:
Discrete & Computational Geometry (DCG) is an international journal of mathematics and computer science, covering a broad range of topics in which geometry plays a fundamental role. It publishes papers on such topics as configurations and arrangements, spatial subdivision, packing, covering, and tiling, geometric complexity, polytopes, point location, geometric probability, geometric range searching, combinatorial and computational topology, probabilistic techniques in computational geometry, geometric graphs, geometry of numbers, and motion planning.