在REDCap中通过数据输入触发器实现协变量自适应随机化自动化的工作流程。

IF 3.4 Q2 HEALTH CARE SCIENCES & SERVICES
Jacob M Schauer, Marc O Broxton, Luke V Rasmussen, Gregory Swann, Michael E Newcomb, Jody D Ciolino
{"title":"在REDCap中通过数据输入触发器实现协变量自适应随机化自动化的工作流程。","authors":"Jacob M Schauer, Marc O Broxton, Luke V Rasmussen, Gregory Swann, Michael E Newcomb, Jody D Ciolino","doi":"10.1093/jamiaopen/ooaf110","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Covariate-adaptive randomization algorithms (CARAs) can reduce covariate imbalance in randomized controlled trials (RCTs), but a lack of integration into Research Electronic Data Capture (REDCap) has limited their use. We developed a software pipeline to seamlessly integrate CARAs into REDCap as part of the all2GETHER study, a 2-armed RCT concerning HIV prevention.</p><p><strong>Materials and methods: </strong>Leveraging REDCap's Data Entry Trigger and a separate server, we implemented software in PHP and R to automate randomizations for all2GETHER. Randomizations were triggered by saving a specific REDCap form and were automatically communicated to unblinded study personnel.</p><p><strong>Results: </strong>Study arms were highly comparable, with differences across covariates characterized by Cohen's <i>d</i> = 0.003 for continuous variables and risk differences <2.4% for categorical/binary variables.</p><p><strong>Conclusions: </strong>Our pipeline proved effective at reducing covariate imbalance with minimal additional effort for study personnel.</p><p><strong>Discussion: </strong>This pipeline is reproducible and could be used by other RCTs that collect data via REDCap.</p>","PeriodicalId":36278,"journal":{"name":"JAMIA Open","volume":"8 5","pages":"ooaf110"},"PeriodicalIF":3.4000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12486239/pdf/","citationCount":"0","resultStr":"{\"title\":\"Workflows to automate covariate-adaptive randomization in REDCap via data entry triggers.\",\"authors\":\"Jacob M Schauer, Marc O Broxton, Luke V Rasmussen, Gregory Swann, Michael E Newcomb, Jody D Ciolino\",\"doi\":\"10.1093/jamiaopen/ooaf110\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>Covariate-adaptive randomization algorithms (CARAs) can reduce covariate imbalance in randomized controlled trials (RCTs), but a lack of integration into Research Electronic Data Capture (REDCap) has limited their use. We developed a software pipeline to seamlessly integrate CARAs into REDCap as part of the all2GETHER study, a 2-armed RCT concerning HIV prevention.</p><p><strong>Materials and methods: </strong>Leveraging REDCap's Data Entry Trigger and a separate server, we implemented software in PHP and R to automate randomizations for all2GETHER. Randomizations were triggered by saving a specific REDCap form and were automatically communicated to unblinded study personnel.</p><p><strong>Results: </strong>Study arms were highly comparable, with differences across covariates characterized by Cohen's <i>d</i> = 0.003 for continuous variables and risk differences <2.4% for categorical/binary variables.</p><p><strong>Conclusions: </strong>Our pipeline proved effective at reducing covariate imbalance with minimal additional effort for study personnel.</p><p><strong>Discussion: </strong>This pipeline is reproducible and could be used by other RCTs that collect data via REDCap.</p>\",\"PeriodicalId\":36278,\"journal\":{\"name\":\"JAMIA Open\",\"volume\":\"8 5\",\"pages\":\"ooaf110\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12486239/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JAMIA Open\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/jamiaopen/ooaf110\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JAMIA Open","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/jamiaopen/ooaf110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

摘要

目的:协变量自适应随机化算法(CARAs)可以减少随机对照试验(rct)中的协变量不平衡,但缺乏与研究电子数据捕获(REDCap)的集成限制了其使用。我们开发了一个软件管道,将CARAs无缝集成到REDCap中,作为all2together研究的一部分,这是一项关于艾滋病毒预防的双臂随机对照试验。材料和方法:利用REDCap的数据输入触发器和一个单独的服务器,我们在PHP和R中实现了all2together的自动随机化软件。随机化是通过保存特定的REDCap表格触发的,并自动传达给非盲研究人员。结果:研究组具有高度可比性,连续变量和风险差异的协变量差异以Cohen’s d = 0.003为特征。结论:我们的管道证明在减少协变量不平衡方面有效,研究人员的额外努力最少。讨论:这个管道是可重复的,可以被其他通过REDCap收集数据的随机对照试验使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Workflows to automate covariate-adaptive randomization in REDCap via data entry triggers.

Objective: Covariate-adaptive randomization algorithms (CARAs) can reduce covariate imbalance in randomized controlled trials (RCTs), but a lack of integration into Research Electronic Data Capture (REDCap) has limited their use. We developed a software pipeline to seamlessly integrate CARAs into REDCap as part of the all2GETHER study, a 2-armed RCT concerning HIV prevention.

Materials and methods: Leveraging REDCap's Data Entry Trigger and a separate server, we implemented software in PHP and R to automate randomizations for all2GETHER. Randomizations were triggered by saving a specific REDCap form and were automatically communicated to unblinded study personnel.

Results: Study arms were highly comparable, with differences across covariates characterized by Cohen's d = 0.003 for continuous variables and risk differences <2.4% for categorical/binary variables.

Conclusions: Our pipeline proved effective at reducing covariate imbalance with minimal additional effort for study personnel.

Discussion: This pipeline is reproducible and could be used by other RCTs that collect data via REDCap.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
JAMIA Open
JAMIA Open Medicine-Health Informatics
CiteScore
4.10
自引率
4.80%
发文量
102
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信