{"title":"生物膜破坏异质结微针:双ROS扩增和葡萄糖剥夺加速糖尿病伤口愈合。","authors":"Wenjie You, Feng Xiao, Zichao Cai, Jiaxin Zhao, Zhengyao Zhang, Weikang Hu, Yun Chen, Kwang Leong Choy, Zijian Wang","doi":"10.7150/thno.120787","DOIUrl":null,"url":null,"abstract":"<p><p><b>Rationale:</b> Diabetic wound healing process is critically hindered by bacterial infection, bacterial biofilm formation, and persistent hyperglycemia. Biomolecular microneedles represent a promising alternative to conventional therapies such as antibiotics and antibiotic-loaded wound dressings, owing to the advantages like reduced risk of drug resistance and enhanced long-term efficacy. However, the microneedles that fulfill the clinical needs of diabetic wounds have rarely been reported. <b>Methods:</b> A glucose oxidase (GOx)-laden Ti<sub>3</sub>C<sub>2</sub>/In<sub>2</sub>O<sub>3</sub> (INTG) heterojunction was engineered as a nano-micro platform for reactive oxygen species (ROS) amplification and glucose deprivation, and subsequently immobilized onto the gelatin methacryloyl (GelMA) microneedle tips to obtain double-layer microneedles (GITG microneedles). Their physiochemical properties and biomedical applications were comprehensively investigated. <b>Results:</b> For INTG heterojunction, the formation of Schottky structure significantly improved the oxygen absorption capacity, facilitated the generation and migration of photogenerated electron-hole pairs, thereby promoting the ROS generation. Besides, under near-infrared (NIR) irradiation, GITG microneedles effectively inhibited bacterial proliferation and survival by generating ROS, thereby preventing the formation of bacterial biofilm. Additionally, GITG microneedles accelerated wound closure and facilitated skin tissue regeneration in a rat model through multiple mechanisms. <b>Conclusion:</b> This study developed an advanced microneedle platform enabling on-demand multimodal treatment, demonstrating significant potential for clinical diabetic wound management.</p>","PeriodicalId":22932,"journal":{"name":"Theranostics","volume":"15 18","pages":"9757-9774"},"PeriodicalIF":13.3000,"publicationDate":"2025-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12486409/pdf/","citationCount":"0","resultStr":"{\"title\":\"Biofilm-disrupting heterojunction microneedles: dual ROS amplification and glucose deprivation for accelerated diabetic wound healing.\",\"authors\":\"Wenjie You, Feng Xiao, Zichao Cai, Jiaxin Zhao, Zhengyao Zhang, Weikang Hu, Yun Chen, Kwang Leong Choy, Zijian Wang\",\"doi\":\"10.7150/thno.120787\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Rationale:</b> Diabetic wound healing process is critically hindered by bacterial infection, bacterial biofilm formation, and persistent hyperglycemia. Biomolecular microneedles represent a promising alternative to conventional therapies such as antibiotics and antibiotic-loaded wound dressings, owing to the advantages like reduced risk of drug resistance and enhanced long-term efficacy. However, the microneedles that fulfill the clinical needs of diabetic wounds have rarely been reported. <b>Methods:</b> A glucose oxidase (GOx)-laden Ti<sub>3</sub>C<sub>2</sub>/In<sub>2</sub>O<sub>3</sub> (INTG) heterojunction was engineered as a nano-micro platform for reactive oxygen species (ROS) amplification and glucose deprivation, and subsequently immobilized onto the gelatin methacryloyl (GelMA) microneedle tips to obtain double-layer microneedles (GITG microneedles). Their physiochemical properties and biomedical applications were comprehensively investigated. <b>Results:</b> For INTG heterojunction, the formation of Schottky structure significantly improved the oxygen absorption capacity, facilitated the generation and migration of photogenerated electron-hole pairs, thereby promoting the ROS generation. Besides, under near-infrared (NIR) irradiation, GITG microneedles effectively inhibited bacterial proliferation and survival by generating ROS, thereby preventing the formation of bacterial biofilm. Additionally, GITG microneedles accelerated wound closure and facilitated skin tissue regeneration in a rat model through multiple mechanisms. <b>Conclusion:</b> This study developed an advanced microneedle platform enabling on-demand multimodal treatment, demonstrating significant potential for clinical diabetic wound management.</p>\",\"PeriodicalId\":22932,\"journal\":{\"name\":\"Theranostics\",\"volume\":\"15 18\",\"pages\":\"9757-9774\"},\"PeriodicalIF\":13.3000,\"publicationDate\":\"2025-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12486409/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theranostics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.7150/thno.120787\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theranostics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.7150/thno.120787","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Biofilm-disrupting heterojunction microneedles: dual ROS amplification and glucose deprivation for accelerated diabetic wound healing.
Rationale: Diabetic wound healing process is critically hindered by bacterial infection, bacterial biofilm formation, and persistent hyperglycemia. Biomolecular microneedles represent a promising alternative to conventional therapies such as antibiotics and antibiotic-loaded wound dressings, owing to the advantages like reduced risk of drug resistance and enhanced long-term efficacy. However, the microneedles that fulfill the clinical needs of diabetic wounds have rarely been reported. Methods: A glucose oxidase (GOx)-laden Ti3C2/In2O3 (INTG) heterojunction was engineered as a nano-micro platform for reactive oxygen species (ROS) amplification and glucose deprivation, and subsequently immobilized onto the gelatin methacryloyl (GelMA) microneedle tips to obtain double-layer microneedles (GITG microneedles). Their physiochemical properties and biomedical applications were comprehensively investigated. Results: For INTG heterojunction, the formation of Schottky structure significantly improved the oxygen absorption capacity, facilitated the generation and migration of photogenerated electron-hole pairs, thereby promoting the ROS generation. Besides, under near-infrared (NIR) irradiation, GITG microneedles effectively inhibited bacterial proliferation and survival by generating ROS, thereby preventing the formation of bacterial biofilm. Additionally, GITG microneedles accelerated wound closure and facilitated skin tissue regeneration in a rat model through multiple mechanisms. Conclusion: This study developed an advanced microneedle platform enabling on-demand multimodal treatment, demonstrating significant potential for clinical diabetic wound management.
期刊介绍:
Theranostics serves as a pivotal platform for the exchange of clinical and scientific insights within the diagnostic and therapeutic molecular and nanomedicine community, along with allied professions engaged in integrating molecular imaging and therapy. As a multidisciplinary journal, Theranostics showcases innovative research articles spanning fields such as in vitro diagnostics and prognostics, in vivo molecular imaging, molecular therapeutics, image-guided therapy, biosensor technology, nanobiosensors, bioelectronics, system biology, translational medicine, point-of-care applications, and personalized medicine. Encouraging a broad spectrum of biomedical research with potential theranostic applications, the journal rigorously peer-reviews primary research, alongside publishing reviews, news, and commentary that aim to bridge the gap between the laboratory, clinic, and biotechnology industries.