Rosie Lanzloth, Nicole L Harris, Anthony M Cannon, Mark H Kaplan, Heather M O'Hagan
{"title":"肥大细胞直接与结直肠癌细胞相互作用,促进上皮细胞向间质细胞转化。","authors":"Rosie Lanzloth, Nicole L Harris, Anthony M Cannon, Mark H Kaplan, Heather M O'Hagan","doi":"10.1038/s41388-025-03589-5","DOIUrl":null,"url":null,"abstract":"<p><p>Mast cells (MCs), a type of granulocytic immune cell, can be both pro- and anti-tumorigenic in colorectal cancer (CRC). We hypothesized that these contrasting findings may be in part due to differential interactions of MCs with CRC subtypes. BRAF mutant CRC uniquely contains intestinal secretory cell types. In this study, we demonstrated that MCs are enriched in BRAF mutant CRC, likely because they are recruited by factors released from cancer secretory cells. To investigate the functional consequences of MC-CRC cell interactions, we performed direct coculture experiments. We demonstrated that MCs promote epithelial-to-mesenchymal transition (EMT) in CRC cells in a calcium- and contact-dependent fashion. Furthermore, inhibiting LFA-1 and ICAM1 integrin binding reduced the coculture-induced EMT-related marker expression in CRC cells. The MC-CRC cell interaction facilitates the transfer of biological materials, including mRNA molecules, from MCs to CRC cells. This study is the first to report a contact-dependent, pro-tumorigenic role of MCs in CRC, as well as the transfer of molecules encoded by MCs to CRC cells. These findings enhance our comprehension of cell-cell communication between immune and cancer cells. Furthermore, this work suggests that targeting MC-CRC interactions, particularly through modulating integrin pathways, could offer new therapeutic strategies for aggressive CRC subtypes.</p>","PeriodicalId":19524,"journal":{"name":"Oncogene","volume":" ","pages":""},"PeriodicalIF":7.3000,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mast cells interact directly with colorectal cancer cells to promote epithelial-to-mesenchymal transition.\",\"authors\":\"Rosie Lanzloth, Nicole L Harris, Anthony M Cannon, Mark H Kaplan, Heather M O'Hagan\",\"doi\":\"10.1038/s41388-025-03589-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mast cells (MCs), a type of granulocytic immune cell, can be both pro- and anti-tumorigenic in colorectal cancer (CRC). We hypothesized that these contrasting findings may be in part due to differential interactions of MCs with CRC subtypes. BRAF mutant CRC uniquely contains intestinal secretory cell types. In this study, we demonstrated that MCs are enriched in BRAF mutant CRC, likely because they are recruited by factors released from cancer secretory cells. To investigate the functional consequences of MC-CRC cell interactions, we performed direct coculture experiments. We demonstrated that MCs promote epithelial-to-mesenchymal transition (EMT) in CRC cells in a calcium- and contact-dependent fashion. Furthermore, inhibiting LFA-1 and ICAM1 integrin binding reduced the coculture-induced EMT-related marker expression in CRC cells. The MC-CRC cell interaction facilitates the transfer of biological materials, including mRNA molecules, from MCs to CRC cells. This study is the first to report a contact-dependent, pro-tumorigenic role of MCs in CRC, as well as the transfer of molecules encoded by MCs to CRC cells. These findings enhance our comprehension of cell-cell communication between immune and cancer cells. Furthermore, this work suggests that targeting MC-CRC interactions, particularly through modulating integrin pathways, could offer new therapeutic strategies for aggressive CRC subtypes.</p>\",\"PeriodicalId\":19524,\"journal\":{\"name\":\"Oncogene\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2025-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Oncogene\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41388-025-03589-5\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oncogene","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41388-025-03589-5","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Mast cells interact directly with colorectal cancer cells to promote epithelial-to-mesenchymal transition.
Mast cells (MCs), a type of granulocytic immune cell, can be both pro- and anti-tumorigenic in colorectal cancer (CRC). We hypothesized that these contrasting findings may be in part due to differential interactions of MCs with CRC subtypes. BRAF mutant CRC uniquely contains intestinal secretory cell types. In this study, we demonstrated that MCs are enriched in BRAF mutant CRC, likely because they are recruited by factors released from cancer secretory cells. To investigate the functional consequences of MC-CRC cell interactions, we performed direct coculture experiments. We demonstrated that MCs promote epithelial-to-mesenchymal transition (EMT) in CRC cells in a calcium- and contact-dependent fashion. Furthermore, inhibiting LFA-1 and ICAM1 integrin binding reduced the coculture-induced EMT-related marker expression in CRC cells. The MC-CRC cell interaction facilitates the transfer of biological materials, including mRNA molecules, from MCs to CRC cells. This study is the first to report a contact-dependent, pro-tumorigenic role of MCs in CRC, as well as the transfer of molecules encoded by MCs to CRC cells. These findings enhance our comprehension of cell-cell communication between immune and cancer cells. Furthermore, this work suggests that targeting MC-CRC interactions, particularly through modulating integrin pathways, could offer new therapeutic strategies for aggressive CRC subtypes.
期刊介绍:
Oncogene is dedicated to advancing our understanding of cancer processes through the publication of exceptional research. The journal seeks to disseminate work that challenges conventional theories and contributes to establishing new paradigms in the etio-pathogenesis, diagnosis, treatment, or prevention of cancers. Emphasis is placed on research shedding light on processes driving metastatic spread and providing crucial insights into cancer biology beyond existing knowledge.
Areas covered include the cellular and molecular biology of cancer, resistance to cancer therapies, and the development of improved approaches to enhance survival. Oncogene spans the spectrum of cancer biology, from fundamental and theoretical work to translational, applied, and clinical research, including early and late Phase clinical trials, particularly those with biologic and translational endpoints.