Monica F Torrez Lamberti, Sharon Thompson, Natalie A Harrison, Christopher L Gardner, Danilo R da Silva, Leandro D Teixeira, Kanthi Kiran Kondepudi, Claudio F Gonzalez, Sasanka S Chukkapalli, Graciela L Lorca
{"title":"约氏乳杆菌N6.2在db/db小鼠模型中改善血糖,减少糖尿病诱导的器官损伤","authors":"Monica F Torrez Lamberti, Sharon Thompson, Natalie A Harrison, Christopher L Gardner, Danilo R da Silva, Leandro D Teixeira, Kanthi Kiran Kondepudi, Claudio F Gonzalez, Sasanka S Chukkapalli, Graciela L Lorca","doi":"10.1530/JOE-25-0184","DOIUrl":null,"url":null,"abstract":"<p><p>Diabetes mellitus is a complex metabolic disorder characterized by hyperglycemia as well as the associated comorbidities. Type 2 diabetes is also associated with dysfunction of liver, kidney and nervous system. In addition, an altered microbiota is frequently observed in subjects with Type 2 diabetes. In this study a db/db (diabetic) mouse model of Type 2 diabetes was used to elucidate the beneficial effects of the probiotic Lactobacillus johnsonii N6.2. To evaluate metabolic effects, we performed metabolomics on liver samples, and RNA-seq from liver and visceral adipose tissue, followed by qRT-PCR validation. Using L. johnsonii N6.2 extracellular vesicles we evaluated lipid accumulation in hepatocytes. Finally, the gut microbiome of db/db mice was profiled using 16S rRNA sequencing. We observed that administration of the probiotic improved glycemic levels and decreased diabetes scores, as well as Type 2 diabetes-associated injury to the pancreas, liver and kidneys. Liver metabolomic and transcriptome analyses identified biomarkers of L. johnsonii N6.2 activity, including modulation of the vitamin K pathway, upregulation of FGF21-, a key regulator of glucose and lipid metabolism, and alternations in selected circadian genes. This study elucidates the beneficial effects of L. johnsonii N6.2, against the common symptoms of type 2 diabetes, highlighting its potential as an adjuvant therapeutic agent.</p>","PeriodicalId":15740,"journal":{"name":"Journal of Endocrinology","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lactobacillus johnsonii N6.2 Improves Glycemia, and Reduces Diabetes-induced Organ Injury in the db/db Mice Model.\",\"authors\":\"Monica F Torrez Lamberti, Sharon Thompson, Natalie A Harrison, Christopher L Gardner, Danilo R da Silva, Leandro D Teixeira, Kanthi Kiran Kondepudi, Claudio F Gonzalez, Sasanka S Chukkapalli, Graciela L Lorca\",\"doi\":\"10.1530/JOE-25-0184\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Diabetes mellitus is a complex metabolic disorder characterized by hyperglycemia as well as the associated comorbidities. Type 2 diabetes is also associated with dysfunction of liver, kidney and nervous system. In addition, an altered microbiota is frequently observed in subjects with Type 2 diabetes. In this study a db/db (diabetic) mouse model of Type 2 diabetes was used to elucidate the beneficial effects of the probiotic Lactobacillus johnsonii N6.2. To evaluate metabolic effects, we performed metabolomics on liver samples, and RNA-seq from liver and visceral adipose tissue, followed by qRT-PCR validation. Using L. johnsonii N6.2 extracellular vesicles we evaluated lipid accumulation in hepatocytes. Finally, the gut microbiome of db/db mice was profiled using 16S rRNA sequencing. We observed that administration of the probiotic improved glycemic levels and decreased diabetes scores, as well as Type 2 diabetes-associated injury to the pancreas, liver and kidneys. Liver metabolomic and transcriptome analyses identified biomarkers of L. johnsonii N6.2 activity, including modulation of the vitamin K pathway, upregulation of FGF21-, a key regulator of glucose and lipid metabolism, and alternations in selected circadian genes. This study elucidates the beneficial effects of L. johnsonii N6.2, against the common symptoms of type 2 diabetes, highlighting its potential as an adjuvant therapeutic agent.</p>\",\"PeriodicalId\":15740,\"journal\":{\"name\":\"Journal of Endocrinology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Endocrinology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1530/JOE-25-0184\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Endocrinology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1530/JOE-25-0184","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
Lactobacillus johnsonii N6.2 Improves Glycemia, and Reduces Diabetes-induced Organ Injury in the db/db Mice Model.
Diabetes mellitus is a complex metabolic disorder characterized by hyperglycemia as well as the associated comorbidities. Type 2 diabetes is also associated with dysfunction of liver, kidney and nervous system. In addition, an altered microbiota is frequently observed in subjects with Type 2 diabetes. In this study a db/db (diabetic) mouse model of Type 2 diabetes was used to elucidate the beneficial effects of the probiotic Lactobacillus johnsonii N6.2. To evaluate metabolic effects, we performed metabolomics on liver samples, and RNA-seq from liver and visceral adipose tissue, followed by qRT-PCR validation. Using L. johnsonii N6.2 extracellular vesicles we evaluated lipid accumulation in hepatocytes. Finally, the gut microbiome of db/db mice was profiled using 16S rRNA sequencing. We observed that administration of the probiotic improved glycemic levels and decreased diabetes scores, as well as Type 2 diabetes-associated injury to the pancreas, liver and kidneys. Liver metabolomic and transcriptome analyses identified biomarkers of L. johnsonii N6.2 activity, including modulation of the vitamin K pathway, upregulation of FGF21-, a key regulator of glucose and lipid metabolism, and alternations in selected circadian genes. This study elucidates the beneficial effects of L. johnsonii N6.2, against the common symptoms of type 2 diabetes, highlighting its potential as an adjuvant therapeutic agent.
期刊介绍:
Journal of Endocrinology is a leading global journal that publishes original research articles, reviews and science guidelines. Its focus is on endocrine physiology and metabolism, including hormone secretion; hormone action; biological effects. The journal publishes basic and translational studies at the organ, tissue and whole organism level.