Cox模型预测生存曲线的交互应用:ACS10评分和年龄在儿科AML个性化治疗中的应用

IF 5.6 2区 医学 Q1 ONCOLOGY
JCO precision oncology Pub Date : 2025-10-01 Epub Date: 2025-10-02 DOI:10.1200/PO-25-00634
Subodh Selukar, Harrison Clement, Yonghui Ni, Huiyun Wu, Tushar Patni, Anna Eames Seffernick, Hiroto Inaba, Raul Ribeiro, Jatinder Lamba, Yimei Li, Stanley Pounds
{"title":"Cox模型预测生存曲线的交互应用:ACS10评分和年龄在儿科AML个性化治疗中的应用","authors":"Subodh Selukar, Harrison Clement, Yonghui Ni, Huiyun Wu, Tushar Patni, Anna Eames Seffernick, Hiroto Inaba, Raul Ribeiro, Jatinder Lamba, Yimei Li, Stanley Pounds","doi":"10.1200/PO-25-00634","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Analyses in oncology frequently include Cox proportional hazards models for survival outcomes, but reported results typically only include hazard ratios and respective inference. Cox model predictions of survival functions may help to provide a greater clinical meaning from fitted Cox models for precision oncology research.</p><p><strong>Patients and methods: </strong>We created a publicly available software library, shinyCox, that can generate user-friendly interactive applications to visualize survival outcome predictions of fitted Cox models. To illustrate the benefits of this software, we analyzed data from AML02 and AML08, randomized clinical trials for pediatric patients with AML. Building on a recent article, we assessed how baseline factors and a pharmacogenomics score (ACS10) can affect the predicted overall survival (OS) and event-free survival (EFS) between patients assigned to induction regimens of clofarabine plus cytarabine or daunorubicin and etoposide combined with low-dose cytarabine or high-dose cytarabine.</p><p><strong>Results: </strong>Our model outcome prediction visualization application highlights previously reported associations of ACS10 with EFS and OS, while also providing a better understanding of how other prognostic factors amplify or mitigate prognostic implications of ACS10. It is informative to better understand the practical clinical outcomes in terms of predicted survival probabilities to complement the insights gained from hazard ratio tables.</p><p><strong>Conclusion: </strong>Using shinyCox, we generated visualization applications that let us identify complex relationships between the ACS10 score, age, and the predicted OS and EFS probabilities after AML therapy. This article shows how shinyCox will facilitate model interpretation and accelerate the development of personalized therapies in oncology.</p>","PeriodicalId":14797,"journal":{"name":"JCO precision oncology","volume":"9 ","pages":"e2500634"},"PeriodicalIF":5.6000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interactive Use of Cox Model-Predicted Survival Curves: An Application Using ACS10 Score and Age to Personalize Treatment of Pediatric AML.\",\"authors\":\"Subodh Selukar, Harrison Clement, Yonghui Ni, Huiyun Wu, Tushar Patni, Anna Eames Seffernick, Hiroto Inaba, Raul Ribeiro, Jatinder Lamba, Yimei Li, Stanley Pounds\",\"doi\":\"10.1200/PO-25-00634\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Analyses in oncology frequently include Cox proportional hazards models for survival outcomes, but reported results typically only include hazard ratios and respective inference. Cox model predictions of survival functions may help to provide a greater clinical meaning from fitted Cox models for precision oncology research.</p><p><strong>Patients and methods: </strong>We created a publicly available software library, shinyCox, that can generate user-friendly interactive applications to visualize survival outcome predictions of fitted Cox models. To illustrate the benefits of this software, we analyzed data from AML02 and AML08, randomized clinical trials for pediatric patients with AML. Building on a recent article, we assessed how baseline factors and a pharmacogenomics score (ACS10) can affect the predicted overall survival (OS) and event-free survival (EFS) between patients assigned to induction regimens of clofarabine plus cytarabine or daunorubicin and etoposide combined with low-dose cytarabine or high-dose cytarabine.</p><p><strong>Results: </strong>Our model outcome prediction visualization application highlights previously reported associations of ACS10 with EFS and OS, while also providing a better understanding of how other prognostic factors amplify or mitigate prognostic implications of ACS10. It is informative to better understand the practical clinical outcomes in terms of predicted survival probabilities to complement the insights gained from hazard ratio tables.</p><p><strong>Conclusion: </strong>Using shinyCox, we generated visualization applications that let us identify complex relationships between the ACS10 score, age, and the predicted OS and EFS probabilities after AML therapy. This article shows how shinyCox will facilitate model interpretation and accelerate the development of personalized therapies in oncology.</p>\",\"PeriodicalId\":14797,\"journal\":{\"name\":\"JCO precision oncology\",\"volume\":\"9 \",\"pages\":\"e2500634\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JCO precision oncology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1200/PO-25-00634\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/10/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JCO precision oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1200/PO-25-00634","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/10/2 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

目的:肿瘤学分析经常包括生存结果的Cox比例风险模型,但报道的结果通常只包括风险比和相应的推断。Cox模型对生存功能的预测可能有助于为精确肿瘤学研究提供更大的临床意义。患者和方法:我们创建了一个公开可用的软件库,shinyCox,它可以生成用户友好的交互式应用程序,以可视化拟合Cox模型的生存结果预测。为了说明该软件的好处,我们分析了AML02和AML08的数据,AML02和AML08是儿科AML患者的随机临床试验。基于最近的一篇文章,我们评估了基线因素和药物基因组学评分(ACS10)如何影响氯法拉滨加阿糖胞苷或柔红霉素和乙泊苷联合低剂量阿糖胞苷或高剂量阿糖胞苷诱导方案的患者的预测总生存期(OS)和无事件生存期(EFS)。结果:我们的模型结果预测可视化应用程序突出了先前报道的ACS10与EFS和OS的关联,同时也更好地了解了其他预后因素如何放大或减轻ACS10的预后影响。从预测生存概率的角度更好地理解实际临床结果,以补充从风险比表中获得的见解,是有益的。结论:使用shinyCox,我们生成了可视化应用程序,使我们能够识别AML治疗后ACS10评分、年龄和预测OS和EFS概率之间的复杂关系。本文展示了shinyCox将如何促进模型解释和加速肿瘤个性化治疗的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Interactive Use of Cox Model-Predicted Survival Curves: An Application Using ACS10 Score and Age to Personalize Treatment of Pediatric AML.

Purpose: Analyses in oncology frequently include Cox proportional hazards models for survival outcomes, but reported results typically only include hazard ratios and respective inference. Cox model predictions of survival functions may help to provide a greater clinical meaning from fitted Cox models for precision oncology research.

Patients and methods: We created a publicly available software library, shinyCox, that can generate user-friendly interactive applications to visualize survival outcome predictions of fitted Cox models. To illustrate the benefits of this software, we analyzed data from AML02 and AML08, randomized clinical trials for pediatric patients with AML. Building on a recent article, we assessed how baseline factors and a pharmacogenomics score (ACS10) can affect the predicted overall survival (OS) and event-free survival (EFS) between patients assigned to induction regimens of clofarabine plus cytarabine or daunorubicin and etoposide combined with low-dose cytarabine or high-dose cytarabine.

Results: Our model outcome prediction visualization application highlights previously reported associations of ACS10 with EFS and OS, while also providing a better understanding of how other prognostic factors amplify or mitigate prognostic implications of ACS10. It is informative to better understand the practical clinical outcomes in terms of predicted survival probabilities to complement the insights gained from hazard ratio tables.

Conclusion: Using shinyCox, we generated visualization applications that let us identify complex relationships between the ACS10 score, age, and the predicted OS and EFS probabilities after AML therapy. This article shows how shinyCox will facilitate model interpretation and accelerate the development of personalized therapies in oncology.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.10
自引率
4.30%
发文量
363
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信