室旁核(PVN)中的Apelin - 13通过PVN/孤束核(NTS)中的V1a受体和NTS中的gar γ - 2减轻心肌缺血。

IF 5.8 3区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL
International journal of molecular medicine Pub Date : 2025-12-01 Epub Date: 2025-10-03 DOI:10.3892/ijmm.2025.5652
Wen Yan, Dan Wang, Xinmin Zhang, Chengluan Xuan
{"title":"室旁核(PVN)中的Apelin - 13通过PVN/孤束核(NTS)中的V1a受体和NTS中的gar γ - 2减轻心肌缺血。","authors":"Wen Yan, Dan Wang, Xinmin Zhang, Chengluan Xuan","doi":"10.3892/ijmm.2025.5652","DOIUrl":null,"url":null,"abstract":"<p><p>The apelin system plays a significant role in central blood pressure regulation, but its role in the neural control of myocardial protection remains poorly understood. The present study evaluated the effects of apelin‑13 in the paraventricular nucleus (PVN) on myocardial infarction (MI). In a male rat MI model, apelin‑13 expression was decreased in PVN, while Vasopressin 1a (V1a) receptor expression was increased in both PVN and nucleus tractus solitarii (NTS) and GABAA receptor (GAR)γ2 expression was increased in NTS. Cardiac function was assessed after microinjection of apelin‑13 or gene transfer of apelin‑13 into the PVN. Apelin‑13 overexpression in PVN markedly improved MI cardiac function, as evidenced by left ventricular end‑diastolic diameter, left ventricular end‑systolic diameter, left ventricular ejection fraction and left ventricular fractional shortening, along with decreased plasma noradrenaline and increased vasopressin levels. Mechanistically, both TGF‑β/Smad signaling and Bax/Bcl‑2 expression were implicated in heart tissue. Additionally, serum levels of four parasympathetic neuropeptides (somatostatin, cholecystokinin, glucagon‑like peptide‑1 and vasoactive intestinal peptide) were elevated in parallel with cardiac function improvement. Notably, V1a receptor antagonist administration in PVN/NTS or GAR agonist treatment in NTS attenuated the cardioprotective effects of apelin‑13. These findings demonstrated that PVN apelin‑13 overexpression improves cardiac function through V1a receptors (PVN/NTS) and GARγ2 (NTS), involving both parasympathetic neuroendocrine activation and modulation of myocardial apoptotic/inflammatory pathways. The present study provided novel insights into neural mechanisms of cardiovascular regulation.</p>","PeriodicalId":14086,"journal":{"name":"International journal of molecular medicine","volume":"56 6","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Apelin‑13 in the paraventricular nucleus (PVN) attenuates myocardial ischemia through V1a receptors in PVN/nucleus tractus solitarii (NTS) and GARγ2 in NTS.\",\"authors\":\"Wen Yan, Dan Wang, Xinmin Zhang, Chengluan Xuan\",\"doi\":\"10.3892/ijmm.2025.5652\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The apelin system plays a significant role in central blood pressure regulation, but its role in the neural control of myocardial protection remains poorly understood. The present study evaluated the effects of apelin‑13 in the paraventricular nucleus (PVN) on myocardial infarction (MI). In a male rat MI model, apelin‑13 expression was decreased in PVN, while Vasopressin 1a (V1a) receptor expression was increased in both PVN and nucleus tractus solitarii (NTS) and GABAA receptor (GAR)γ2 expression was increased in NTS. Cardiac function was assessed after microinjection of apelin‑13 or gene transfer of apelin‑13 into the PVN. Apelin‑13 overexpression in PVN markedly improved MI cardiac function, as evidenced by left ventricular end‑diastolic diameter, left ventricular end‑systolic diameter, left ventricular ejection fraction and left ventricular fractional shortening, along with decreased plasma noradrenaline and increased vasopressin levels. Mechanistically, both TGF‑β/Smad signaling and Bax/Bcl‑2 expression were implicated in heart tissue. Additionally, serum levels of four parasympathetic neuropeptides (somatostatin, cholecystokinin, glucagon‑like peptide‑1 and vasoactive intestinal peptide) were elevated in parallel with cardiac function improvement. Notably, V1a receptor antagonist administration in PVN/NTS or GAR agonist treatment in NTS attenuated the cardioprotective effects of apelin‑13. These findings demonstrated that PVN apelin‑13 overexpression improves cardiac function through V1a receptors (PVN/NTS) and GARγ2 (NTS), involving both parasympathetic neuroendocrine activation and modulation of myocardial apoptotic/inflammatory pathways. The present study provided novel insights into neural mechanisms of cardiovascular regulation.</p>\",\"PeriodicalId\":14086,\"journal\":{\"name\":\"International journal of molecular medicine\",\"volume\":\"56 6\",\"pages\":\"\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2025-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of molecular medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3892/ijmm.2025.5652\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/10/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of molecular medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3892/ijmm.2025.5652","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/10/3 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

apelin系统在中枢血压调节中起着重要作用,但其在心肌保护的神经控制中的作用尚不清楚。本研究评估了室旁核(PVN)中apelin - 13对心肌梗死(MI)的影响。在雄性心肌梗死模型中,apelin - 13在PVN中表达降低,而加压素1a (V1a)受体在PVN和孤束核(NTS)中表达升高,GABAA受体(GAR)γ - 2在NTS中表达升高。显微注射apelin - 13或将apelin - 13基因转移至PVN后评估心功能。PVN中Apelin - 13过表达可显著改善心肌梗死心功能,左室舒张末期内径、左室收缩末期内径、左室射血分数和左室分数缩短均可证明,血浆去甲肾上腺素降低,加压素水平升高。在机制上,TGF - β/Smad信号和Bax/Bcl - 2表达都与心脏组织有关。此外,四种副交感神经肽(生长抑素、胆囊收缩素、胰高血糖素样肽- 1和血管活性肠肽)的血清水平随着心功能的改善而升高。值得注意的是,在PVN/NTS中使用V1a受体拮抗剂或在NTS中使用GAR激动剂会减弱apelin - 13的心脏保护作用。这些发现表明,PVN apelin - 13过表达通过V1a受体(PVN/NTS)和gar γ - 2 (NTS)改善心功能,涉及副交感神经内分泌激活和心肌凋亡/炎症通路的调节。本研究为心血管调节的神经机制提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Apelin‑13 in the paraventricular nucleus (PVN) attenuates myocardial ischemia through V1a receptors in PVN/nucleus tractus solitarii (NTS) and GARγ2 in NTS.

The apelin system plays a significant role in central blood pressure regulation, but its role in the neural control of myocardial protection remains poorly understood. The present study evaluated the effects of apelin‑13 in the paraventricular nucleus (PVN) on myocardial infarction (MI). In a male rat MI model, apelin‑13 expression was decreased in PVN, while Vasopressin 1a (V1a) receptor expression was increased in both PVN and nucleus tractus solitarii (NTS) and GABAA receptor (GAR)γ2 expression was increased in NTS. Cardiac function was assessed after microinjection of apelin‑13 or gene transfer of apelin‑13 into the PVN. Apelin‑13 overexpression in PVN markedly improved MI cardiac function, as evidenced by left ventricular end‑diastolic diameter, left ventricular end‑systolic diameter, left ventricular ejection fraction and left ventricular fractional shortening, along with decreased plasma noradrenaline and increased vasopressin levels. Mechanistically, both TGF‑β/Smad signaling and Bax/Bcl‑2 expression were implicated in heart tissue. Additionally, serum levels of four parasympathetic neuropeptides (somatostatin, cholecystokinin, glucagon‑like peptide‑1 and vasoactive intestinal peptide) were elevated in parallel with cardiac function improvement. Notably, V1a receptor antagonist administration in PVN/NTS or GAR agonist treatment in NTS attenuated the cardioprotective effects of apelin‑13. These findings demonstrated that PVN apelin‑13 overexpression improves cardiac function through V1a receptors (PVN/NTS) and GARγ2 (NTS), involving both parasympathetic neuroendocrine activation and modulation of myocardial apoptotic/inflammatory pathways. The present study provided novel insights into neural mechanisms of cardiovascular regulation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International journal of molecular medicine
International journal of molecular medicine 医学-医学:研究与实验
CiteScore
12.30
自引率
0.00%
发文量
124
审稿时长
3 months
期刊介绍: The main aim of Spandidos Publications is to facilitate scientific communication in a clear, concise and objective manner, while striving to provide prompt publication of original works of high quality. The journals largely concentrate on molecular and experimental medicine, oncology, clinical and experimental cancer treatment and biomedical research. All journals published by Spandidos Publications Ltd. maintain the highest standards of quality, and the members of their Editorial Boards are world-renowned scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信