Alejandro Pérez-Vereda, Jesús Fontecha, Adrián Sanchez-Miguel, Luis Cabañero, Iván González, Christopher Nugent
{"title":"通过能源消耗数据和机器学习来支持独立老龄化的日常生活检测活动。","authors":"Alejandro Pérez-Vereda, Jesús Fontecha, Adrián Sanchez-Miguel, Luis Cabañero, Iván González, Christopher Nugent","doi":"10.1007/s10916-025-02256-2","DOIUrl":null,"url":null,"abstract":"<p><p>The aging population presents significant challenges for healthcare and social services, emphasizing the need for innovative solutions that support independent living. This study explores the feasibility of identifying Instrumental Activities of Daily Living (IADLs) through power consumption data collected from smart plug-based system. Using a combination of unsupervised and supervised machine learning techniques, including K-Means clustering and Long Short-Term Memory (LSTM) networks, we developed a method to classify and predict IADLs based on energy usage patterns. The REFIT dataset was used to train and validate the models, ensuring generalizability across different households. Results demonstrate that K-means clustering effectively group energy consumption patterns with Silhouette & DB algorithms in a reasonable time (Silhouette score of 0.88 and a Davies-Bouldin Index of 0.29), while LSTM models trained on monthly household data, demonstrated high rates of activities classified over time (with F1-Score of 0.99). IADLs like cooking, cleaning, and entertainment showed the highest classification accuracy due to their distinct energy features. This approach enables non-intrusive monitoring of daily routines, offering potential applications in Ambient Assisted Living (AAL) environments. Despite limitations in detecting activities without direct energy consumption, this study highlights the potential of energy-based activity recognition for promoting independent aging. Future work will focus on refining abnormal behavior detection and integrating additional contextual factors to improve accuracy.</p>","PeriodicalId":16338,"journal":{"name":"Journal of Medical Systems","volume":"49 1","pages":"124"},"PeriodicalIF":5.7000,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Activities of Daily Living Detection through Energy Consumption Data and Machine Learning to Support Independent Aging.\",\"authors\":\"Alejandro Pérez-Vereda, Jesús Fontecha, Adrián Sanchez-Miguel, Luis Cabañero, Iván González, Christopher Nugent\",\"doi\":\"10.1007/s10916-025-02256-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The aging population presents significant challenges for healthcare and social services, emphasizing the need for innovative solutions that support independent living. This study explores the feasibility of identifying Instrumental Activities of Daily Living (IADLs) through power consumption data collected from smart plug-based system. Using a combination of unsupervised and supervised machine learning techniques, including K-Means clustering and Long Short-Term Memory (LSTM) networks, we developed a method to classify and predict IADLs based on energy usage patterns. The REFIT dataset was used to train and validate the models, ensuring generalizability across different households. Results demonstrate that K-means clustering effectively group energy consumption patterns with Silhouette & DB algorithms in a reasonable time (Silhouette score of 0.88 and a Davies-Bouldin Index of 0.29), while LSTM models trained on monthly household data, demonstrated high rates of activities classified over time (with F1-Score of 0.99). IADLs like cooking, cleaning, and entertainment showed the highest classification accuracy due to their distinct energy features. This approach enables non-intrusive monitoring of daily routines, offering potential applications in Ambient Assisted Living (AAL) environments. Despite limitations in detecting activities without direct energy consumption, this study highlights the potential of energy-based activity recognition for promoting independent aging. Future work will focus on refining abnormal behavior detection and integrating additional contextual factors to improve accuracy.</p>\",\"PeriodicalId\":16338,\"journal\":{\"name\":\"Journal of Medical Systems\",\"volume\":\"49 1\",\"pages\":\"124\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Medical Systems\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10916-025-02256-2\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Systems","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10916-025-02256-2","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
Activities of Daily Living Detection through Energy Consumption Data and Machine Learning to Support Independent Aging.
The aging population presents significant challenges for healthcare and social services, emphasizing the need for innovative solutions that support independent living. This study explores the feasibility of identifying Instrumental Activities of Daily Living (IADLs) through power consumption data collected from smart plug-based system. Using a combination of unsupervised and supervised machine learning techniques, including K-Means clustering and Long Short-Term Memory (LSTM) networks, we developed a method to classify and predict IADLs based on energy usage patterns. The REFIT dataset was used to train and validate the models, ensuring generalizability across different households. Results demonstrate that K-means clustering effectively group energy consumption patterns with Silhouette & DB algorithms in a reasonable time (Silhouette score of 0.88 and a Davies-Bouldin Index of 0.29), while LSTM models trained on monthly household data, demonstrated high rates of activities classified over time (with F1-Score of 0.99). IADLs like cooking, cleaning, and entertainment showed the highest classification accuracy due to their distinct energy features. This approach enables non-intrusive monitoring of daily routines, offering potential applications in Ambient Assisted Living (AAL) environments. Despite limitations in detecting activities without direct energy consumption, this study highlights the potential of energy-based activity recognition for promoting independent aging. Future work will focus on refining abnormal behavior detection and integrating additional contextual factors to improve accuracy.
期刊介绍:
Journal of Medical Systems provides a forum for the presentation and discussion of the increasingly extensive applications of new systems techniques and methods in hospital clinic and physician''s office administration; pathology radiology and pharmaceutical delivery systems; medical records storage and retrieval; and ancillary patient-support systems. The journal publishes informative articles essays and studies across the entire scale of medical systems from large hospital programs to novel small-scale medical services. Education is an integral part of this amalgamation of sciences and selected articles are published in this area. Since existing medical systems are constantly being modified to fit particular circumstances and to solve specific problems the journal includes a special section devoted to status reports on current installations.