Omar Herrera-Asmat, Alexander B Tong, Wenxia Lin, Tiantian Kong, Juan R Del Valle, Daniel G Guerra, Yon W Ebright, Richard H Ebright, Carlos Bustamante
{"title":"三种小分子抑制剂对结核分枝杆菌RNA聚合酶转录延伸的多形性影响。","authors":"Omar Herrera-Asmat, Alexander B Tong, Wenxia Lin, Tiantian Kong, Juan R Del Valle, Daniel G Guerra, Yon W Ebright, Richard H Ebright, Carlos Bustamante","doi":"10.7554/eLife.105545","DOIUrl":null,"url":null,"abstract":"<p><p>The <i>Mycobacterium tuberculosis</i> RNA polymerase (MtbRNAP) is the target of the first-line anti-tuberculosis inhibitor rifampin, however, the emergence of rifampin resistance necessitates the development of new antibiotics. Here, we communicate the first single-molecule characterization of MtbRNAP elongation and its inhibition by three diverse small-molecule inhibitors: N(α)-aroyl-N-aryl-phenylalaninamide (D-IX216), streptolydigin (Stl), and pseudouridimycin (PUM) using high-resolution optical tweezers. Compared to <i>Escherichia coli</i> RNA polymerase (EcoRNAP), MtbRNAP transcribes more slowly, has similar mechanical robustness, and only weakly recognizes <i>E. coli</i> pause sequences. The three small-molecule inhibitors of MtbRNAP exhibit strikingly different effects on transcription elongation. In the presence of D-IX216, which inhibits RNAP active-center bridge-helix motions required for nucleotide addition, the enzyme exhibits transitions between slowly and super-slowly elongating inhibited states. Stl, which inhibits the RNAP trigger-loop motions also required for nucleotide addition, inhibits RNAP primarily by inducing pausing and backtracking. PUM, a nucleoside analog of UTP, in addition to acting as a competitive inhibitor, induces the formation of slowly elongating RNAP inhibited states. Our results indicate that the three classes of small-molecule inhibitors affect the enzyme in distinct ways and show that the combination of Stl and D-IX216, which both target the RNAP bridge helix, has a strong synergistic effect on the enzyme.</p>","PeriodicalId":11640,"journal":{"name":"eLife","volume":"14 ","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pleomorphic effects of three small-molecule inhibitors on transcription elongation by <i>Mycobacterium tuberculosis</i> RNA polymerase.\",\"authors\":\"Omar Herrera-Asmat, Alexander B Tong, Wenxia Lin, Tiantian Kong, Juan R Del Valle, Daniel G Guerra, Yon W Ebright, Richard H Ebright, Carlos Bustamante\",\"doi\":\"10.7554/eLife.105545\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The <i>Mycobacterium tuberculosis</i> RNA polymerase (MtbRNAP) is the target of the first-line anti-tuberculosis inhibitor rifampin, however, the emergence of rifampin resistance necessitates the development of new antibiotics. Here, we communicate the first single-molecule characterization of MtbRNAP elongation and its inhibition by three diverse small-molecule inhibitors: N(α)-aroyl-N-aryl-phenylalaninamide (D-IX216), streptolydigin (Stl), and pseudouridimycin (PUM) using high-resolution optical tweezers. Compared to <i>Escherichia coli</i> RNA polymerase (EcoRNAP), MtbRNAP transcribes more slowly, has similar mechanical robustness, and only weakly recognizes <i>E. coli</i> pause sequences. The three small-molecule inhibitors of MtbRNAP exhibit strikingly different effects on transcription elongation. In the presence of D-IX216, which inhibits RNAP active-center bridge-helix motions required for nucleotide addition, the enzyme exhibits transitions between slowly and super-slowly elongating inhibited states. Stl, which inhibits the RNAP trigger-loop motions also required for nucleotide addition, inhibits RNAP primarily by inducing pausing and backtracking. PUM, a nucleoside analog of UTP, in addition to acting as a competitive inhibitor, induces the formation of slowly elongating RNAP inhibited states. Our results indicate that the three classes of small-molecule inhibitors affect the enzyme in distinct ways and show that the combination of Stl and D-IX216, which both target the RNAP bridge helix, has a strong synergistic effect on the enzyme.</p>\",\"PeriodicalId\":11640,\"journal\":{\"name\":\"eLife\",\"volume\":\"14 \",\"pages\":\"\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2025-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"eLife\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.7554/eLife.105545\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"eLife","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.7554/eLife.105545","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
Pleomorphic effects of three small-molecule inhibitors on transcription elongation by Mycobacterium tuberculosis RNA polymerase.
The Mycobacterium tuberculosis RNA polymerase (MtbRNAP) is the target of the first-line anti-tuberculosis inhibitor rifampin, however, the emergence of rifampin resistance necessitates the development of new antibiotics. Here, we communicate the first single-molecule characterization of MtbRNAP elongation and its inhibition by three diverse small-molecule inhibitors: N(α)-aroyl-N-aryl-phenylalaninamide (D-IX216), streptolydigin (Stl), and pseudouridimycin (PUM) using high-resolution optical tweezers. Compared to Escherichia coli RNA polymerase (EcoRNAP), MtbRNAP transcribes more slowly, has similar mechanical robustness, and only weakly recognizes E. coli pause sequences. The three small-molecule inhibitors of MtbRNAP exhibit strikingly different effects on transcription elongation. In the presence of D-IX216, which inhibits RNAP active-center bridge-helix motions required for nucleotide addition, the enzyme exhibits transitions between slowly and super-slowly elongating inhibited states. Stl, which inhibits the RNAP trigger-loop motions also required for nucleotide addition, inhibits RNAP primarily by inducing pausing and backtracking. PUM, a nucleoside analog of UTP, in addition to acting as a competitive inhibitor, induces the formation of slowly elongating RNAP inhibited states. Our results indicate that the three classes of small-molecule inhibitors affect the enzyme in distinct ways and show that the combination of Stl and D-IX216, which both target the RNAP bridge helix, has a strong synergistic effect on the enzyme.
期刊介绍:
eLife is a distinguished, not-for-profit, peer-reviewed open access scientific journal that specializes in the fields of biomedical and life sciences. eLife is known for its selective publication process, which includes a variety of article types such as:
Research Articles: Detailed reports of original research findings.
Short Reports: Concise presentations of significant findings that do not warrant a full-length research article.
Tools and Resources: Descriptions of new tools, technologies, or resources that facilitate scientific research.
Research Advances: Brief reports on significant scientific advancements that have immediate implications for the field.
Scientific Correspondence: Short communications that comment on or provide additional information related to published articles.
Review Articles: Comprehensive overviews of a specific topic or field within the life sciences.