MeCP2在Rett综合征缺氧、氧化应激和基因调控的十字路口。

IF 2.6 4区 医学 Q2 GENETICS & HEREDITY
Jessica L Huang, Osman Sharifi, Dag H Yasui, Janine M LaSalle
{"title":"MeCP2在Rett综合征缺氧、氧化应激和基因调控的十字路口。","authors":"Jessica L Huang, Osman Sharifi, Dag H Yasui, Janine M LaSalle","doi":"10.1080/17501911.2025.2568303","DOIUrl":null,"url":null,"abstract":"<p><p>Rett syndrome (RTT) is a severe neurodevelopmental disorder primarily affecting females, caused by mutations in the X-linked gene <i>MECP2</i>. This gene encodes methyl CpG binding protein 2 (MeCP2), a multifunctional epigenetic regulator critical for neuronal gene regulation. In addition to well-characterized neurological symptoms, such as seizures and motor abnormalities, RTT patients frequently present with irregular breathing patterns that induce intermittent hypoxia, suggesting that MeCP2 contributes to respiratory regulation as well as the brain's cellular and molecular response to hypoxia. Mechanistically, MeCP2 appears to influence hypoxia-induced expression of the neuroprotective peptide brain-derived neurotrophic factor (BDNF), as impaired BDNF regulation in MeCP2-deficient neurons contributes to hypoxia vulnerability. RTT patients also display increased oxidative stress, marked by elevated lipid peroxidation, DNA damage, and reduced antioxidant production. Dysfunctional mitochondria in MeCP2-deficient astrocytes and neurons further propagate oxidative damage and non-cell-autonomous effects of MeCP2 loss. Moreover, recent transcriptomic studies revealed widespread transcriptional dysregulation in RTT, including pathways associated with mitochondrial function and oxidative stress. We review and discuss an expanded role for MeCP2 as a critical integrator of hypoxia sensing, oxidative stress regulation, and transcriptional adaptation in the developing brain, offering new insights into treatments targeting the complex pathophysiology of RTT.</p>","PeriodicalId":11959,"journal":{"name":"Epigenomics","volume":" ","pages":"1-11"},"PeriodicalIF":2.6000,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MeCP2 at the crossroads of hypoxia, oxidative stress, and gene regulation in Rett syndrome.\",\"authors\":\"Jessica L Huang, Osman Sharifi, Dag H Yasui, Janine M LaSalle\",\"doi\":\"10.1080/17501911.2025.2568303\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Rett syndrome (RTT) is a severe neurodevelopmental disorder primarily affecting females, caused by mutations in the X-linked gene <i>MECP2</i>. This gene encodes methyl CpG binding protein 2 (MeCP2), a multifunctional epigenetic regulator critical for neuronal gene regulation. In addition to well-characterized neurological symptoms, such as seizures and motor abnormalities, RTT patients frequently present with irregular breathing patterns that induce intermittent hypoxia, suggesting that MeCP2 contributes to respiratory regulation as well as the brain's cellular and molecular response to hypoxia. Mechanistically, MeCP2 appears to influence hypoxia-induced expression of the neuroprotective peptide brain-derived neurotrophic factor (BDNF), as impaired BDNF regulation in MeCP2-deficient neurons contributes to hypoxia vulnerability. RTT patients also display increased oxidative stress, marked by elevated lipid peroxidation, DNA damage, and reduced antioxidant production. Dysfunctional mitochondria in MeCP2-deficient astrocytes and neurons further propagate oxidative damage and non-cell-autonomous effects of MeCP2 loss. Moreover, recent transcriptomic studies revealed widespread transcriptional dysregulation in RTT, including pathways associated with mitochondrial function and oxidative stress. We review and discuss an expanded role for MeCP2 as a critical integrator of hypoxia sensing, oxidative stress regulation, and transcriptional adaptation in the developing brain, offering new insights into treatments targeting the complex pathophysiology of RTT.</p>\",\"PeriodicalId\":11959,\"journal\":{\"name\":\"Epigenomics\",\"volume\":\" \",\"pages\":\"1-11\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Epigenomics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/17501911.2025.2568303\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epigenomics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/17501911.2025.2568303","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

Rett综合征(RTT)是一种主要影响女性的严重神经发育障碍,由x连锁基因MECP2突变引起。该基因编码甲基CpG结合蛋白2 (MeCP2),这是一种对神经元基因调控至关重要的多功能表观遗传调控因子。除了具有明显特征的神经系统症状,如癫痫发作和运动异常,RTT患者经常出现不规则的呼吸模式,导致间歇性缺氧,这表明MeCP2有助于呼吸调节以及大脑对缺氧的细胞和分子反应。机制上,MeCP2似乎影响缺氧诱导的神经保护肽脑源性神经营养因子(BDNF)的表达,因为MeCP2缺陷神经元中BDNF调节受损有助于缺氧易感性。RTT患者还表现出氧化应激增加,表现为脂质过氧化升高、DNA损伤和抗氧化剂产生减少。MeCP2缺失的星形胶质细胞和神经元中功能失调的线粒体进一步传播MeCP2缺失的氧化损伤和非细胞自主效应。此外,最近的转录组学研究表明,RTT中广泛存在转录失调,包括与线粒体功能和氧化应激相关的途径。我们回顾并讨论了MeCP2在大脑发育过程中作为缺氧感知、氧化应激调节和转录适应的关键整合体的扩展作用,为针对RTT复杂病理生理的治疗提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MeCP2 at the crossroads of hypoxia, oxidative stress, and gene regulation in Rett syndrome.

Rett syndrome (RTT) is a severe neurodevelopmental disorder primarily affecting females, caused by mutations in the X-linked gene MECP2. This gene encodes methyl CpG binding protein 2 (MeCP2), a multifunctional epigenetic regulator critical for neuronal gene regulation. In addition to well-characterized neurological symptoms, such as seizures and motor abnormalities, RTT patients frequently present with irregular breathing patterns that induce intermittent hypoxia, suggesting that MeCP2 contributes to respiratory regulation as well as the brain's cellular and molecular response to hypoxia. Mechanistically, MeCP2 appears to influence hypoxia-induced expression of the neuroprotective peptide brain-derived neurotrophic factor (BDNF), as impaired BDNF regulation in MeCP2-deficient neurons contributes to hypoxia vulnerability. RTT patients also display increased oxidative stress, marked by elevated lipid peroxidation, DNA damage, and reduced antioxidant production. Dysfunctional mitochondria in MeCP2-deficient astrocytes and neurons further propagate oxidative damage and non-cell-autonomous effects of MeCP2 loss. Moreover, recent transcriptomic studies revealed widespread transcriptional dysregulation in RTT, including pathways associated with mitochondrial function and oxidative stress. We review and discuss an expanded role for MeCP2 as a critical integrator of hypoxia sensing, oxidative stress regulation, and transcriptional adaptation in the developing brain, offering new insights into treatments targeting the complex pathophysiology of RTT.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Epigenomics
Epigenomics GENETICS & HEREDITY-
CiteScore
5.80
自引率
2.60%
发文量
95
审稿时长
>12 weeks
期刊介绍: Epigenomics provides the forum to address the rapidly progressing research developments in this ever-expanding field; to report on the major challenges ahead and critical advances that are propelling the science forward. The journal delivers this information in concise, at-a-glance article formats – invaluable to a time constrained community. Substantial developments in our current knowledge and understanding of genomics and epigenetics are constantly being made, yet this field is still in its infancy. Epigenomics provides a critical overview of the latest and most significant advances as they unfold and explores their potential application in the clinical setting.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信