复杂振荡器网络同步的对抗控制。

IF 3.2 2区 数学 Q1 MATHEMATICS, APPLIED
Chaos Pub Date : 2025-10-01 DOI:10.1063/5.0284213
Yasutoshi Nagahama, Kosuke Miyazato, Kazuhiro Takemoto
{"title":"复杂振荡器网络同步的对抗控制。","authors":"Yasutoshi Nagahama, Kosuke Miyazato, Kazuhiro Takemoto","doi":"10.1063/5.0284213","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigates perturbation strategies inspired by adversarial attack principles from deep learning, designed to control synchronization dynamics through strategically crafted weak perturbations. We propose a gradient-based optimization method that identifies small phase perturbations to dramatically enhance or suppress collective synchronization in Kuramoto oscillator networks. Our approach formulates synchronization control as an optimization problem, computing gradients of the order parameter with respect to oscillator phases to determine optimal perturbation directions. Results demonstrate that extremely small phase perturbations applied to network oscillators can achieve significant synchronization control across diverse network architectures. Our analysis reveals that synchronization enhancement is achievable across various network sizes, while synchronization suppression becomes particularly effective in larger networks, with effectiveness scaling favorably with the network size. The method is systematically validated on canonical model networks including scale-free and small-world topologies and real-world networks representing power grids and brain connectivity patterns. This adversarial framework represents a novel paradigm for synchronization management by introducing deep learning concepts to networked dynamical systems.</p>","PeriodicalId":9974,"journal":{"name":"Chaos","volume":"35 10","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adversarial control of synchronization in complex oscillator networks.\",\"authors\":\"Yasutoshi Nagahama, Kosuke Miyazato, Kazuhiro Takemoto\",\"doi\":\"10.1063/5.0284213\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study investigates perturbation strategies inspired by adversarial attack principles from deep learning, designed to control synchronization dynamics through strategically crafted weak perturbations. We propose a gradient-based optimization method that identifies small phase perturbations to dramatically enhance or suppress collective synchronization in Kuramoto oscillator networks. Our approach formulates synchronization control as an optimization problem, computing gradients of the order parameter with respect to oscillator phases to determine optimal perturbation directions. Results demonstrate that extremely small phase perturbations applied to network oscillators can achieve significant synchronization control across diverse network architectures. Our analysis reveals that synchronization enhancement is achievable across various network sizes, while synchronization suppression becomes particularly effective in larger networks, with effectiveness scaling favorably with the network size. The method is systematically validated on canonical model networks including scale-free and small-world topologies and real-world networks representing power grids and brain connectivity patterns. This adversarial framework represents a novel paradigm for synchronization management by introducing deep learning concepts to networked dynamical systems.</p>\",\"PeriodicalId\":9974,\"journal\":{\"name\":\"Chaos\",\"volume\":\"35 10\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0284213\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0284213","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了受深度学习对抗性攻击原理启发的扰动策略,旨在通过精心设计的弱扰动来控制同步动态。我们提出了一种基于梯度的优化方法,该方法可以识别小相位扰动,从而显著增强或抑制Kuramoto振荡器网络中的集体同步。我们的方法将同步控制作为一个优化问题,计算阶参数相对于振荡器相位的梯度以确定最优摄动方向。结果表明,对网络振荡器施加极小的相位扰动可以在不同的网络结构中实现显著的同步控制。我们的分析表明,同步增强可以在各种网络规模中实现,而同步抑制在较大的网络中变得特别有效,其有效性随着网络规模的扩大而扩大。该方法在规范模型网络(包括无标度和小世界拓扑)以及代表电网和大脑连接模式的现实世界网络上进行了系统验证。这种对抗性框架通过将深度学习概念引入网络动态系统,代表了同步管理的新范式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adversarial control of synchronization in complex oscillator networks.

This study investigates perturbation strategies inspired by adversarial attack principles from deep learning, designed to control synchronization dynamics through strategically crafted weak perturbations. We propose a gradient-based optimization method that identifies small phase perturbations to dramatically enhance or suppress collective synchronization in Kuramoto oscillator networks. Our approach formulates synchronization control as an optimization problem, computing gradients of the order parameter with respect to oscillator phases to determine optimal perturbation directions. Results demonstrate that extremely small phase perturbations applied to network oscillators can achieve significant synchronization control across diverse network architectures. Our analysis reveals that synchronization enhancement is achievable across various network sizes, while synchronization suppression becomes particularly effective in larger networks, with effectiveness scaling favorably with the network size. The method is systematically validated on canonical model networks including scale-free and small-world topologies and real-world networks representing power grids and brain connectivity patterns. This adversarial framework represents a novel paradigm for synchronization management by introducing deep learning concepts to networked dynamical systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chaos
Chaos 物理-物理:数学物理
CiteScore
5.20
自引率
13.80%
发文量
448
审稿时长
2.3 months
期刊介绍: Chaos: An Interdisciplinary Journal of Nonlinear Science is a peer-reviewed journal devoted to increasing the understanding of nonlinear phenomena and describing the manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信