{"title":"三阴性乳腺癌的程序性细胞死亡","authors":"Yaqi Liu, Jinwei He, Jialu Chen, Tianshun Chen, Wei Li, Zhihui Yang, Fancai Zeng","doi":"10.1186/s11658-025-00789-5","DOIUrl":null,"url":null,"abstract":"<p><p>Triple-negative breast cancer (TNBC) is a particularly aggressive and therapeutically challenging subtype of breast cancer, defined by the lack of estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2 expression. This absence of actionable molecular targets contributes to its resistance to conventional treatments. This review provides an overview of the mechanistic functions, interrelated processes, and therapeutic implications of several programmed cell death (PCD) pathways-including apoptosis, pyroptosis, necroptosis, autophagy, and ferroptosis-in the context of TNBC pathogenesis and treatment. A conceptual framework is proposed for leveraging these interconnected cell death pathways as a basis for novel targeted interventions. Given the complex interplay among various PCD forms characterized by shared features such as inflammation, mitochondrial dysfunction, and overlapping molecular mediators, this integrated network offers promising opportunities for combinatorial therapeutic strategies. Modulation of one cell death pathway may influence others, potentially amplifying therapeutic efficacy. Furthermore, these PCD pathways are highly relevant to immunotherapy outcomes, offering a foundation for synergistic treatment modalities. This review provides an in-depth analysis of the crosstalk between immune-based therapies and PCD, along with a comprehensive discussion of derived therapeutic approaches. However, tumor diversity, resistance mechanisms, and discrepancies between preclinical models and human physiology pose major challenges in applying these findings clinically. The overarching goal is to present innovative insights and strategies to enhance the clinical management of TNBC and ultimately improve patient outcomes.</p>","PeriodicalId":9688,"journal":{"name":"Cellular & Molecular Biology Letters","volume":"30 1","pages":"111"},"PeriodicalIF":10.2000,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Programmed cell death in triple-negative breast cancer.\",\"authors\":\"Yaqi Liu, Jinwei He, Jialu Chen, Tianshun Chen, Wei Li, Zhihui Yang, Fancai Zeng\",\"doi\":\"10.1186/s11658-025-00789-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Triple-negative breast cancer (TNBC) is a particularly aggressive and therapeutically challenging subtype of breast cancer, defined by the lack of estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2 expression. This absence of actionable molecular targets contributes to its resistance to conventional treatments. This review provides an overview of the mechanistic functions, interrelated processes, and therapeutic implications of several programmed cell death (PCD) pathways-including apoptosis, pyroptosis, necroptosis, autophagy, and ferroptosis-in the context of TNBC pathogenesis and treatment. A conceptual framework is proposed for leveraging these interconnected cell death pathways as a basis for novel targeted interventions. Given the complex interplay among various PCD forms characterized by shared features such as inflammation, mitochondrial dysfunction, and overlapping molecular mediators, this integrated network offers promising opportunities for combinatorial therapeutic strategies. Modulation of one cell death pathway may influence others, potentially amplifying therapeutic efficacy. Furthermore, these PCD pathways are highly relevant to immunotherapy outcomes, offering a foundation for synergistic treatment modalities. This review provides an in-depth analysis of the crosstalk between immune-based therapies and PCD, along with a comprehensive discussion of derived therapeutic approaches. However, tumor diversity, resistance mechanisms, and discrepancies between preclinical models and human physiology pose major challenges in applying these findings clinically. The overarching goal is to present innovative insights and strategies to enhance the clinical management of TNBC and ultimately improve patient outcomes.</p>\",\"PeriodicalId\":9688,\"journal\":{\"name\":\"Cellular & Molecular Biology Letters\",\"volume\":\"30 1\",\"pages\":\"111\"},\"PeriodicalIF\":10.2000,\"publicationDate\":\"2025-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cellular & Molecular Biology Letters\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s11658-025-00789-5\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular & Molecular Biology Letters","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s11658-025-00789-5","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Programmed cell death in triple-negative breast cancer.
Triple-negative breast cancer (TNBC) is a particularly aggressive and therapeutically challenging subtype of breast cancer, defined by the lack of estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2 expression. This absence of actionable molecular targets contributes to its resistance to conventional treatments. This review provides an overview of the mechanistic functions, interrelated processes, and therapeutic implications of several programmed cell death (PCD) pathways-including apoptosis, pyroptosis, necroptosis, autophagy, and ferroptosis-in the context of TNBC pathogenesis and treatment. A conceptual framework is proposed for leveraging these interconnected cell death pathways as a basis for novel targeted interventions. Given the complex interplay among various PCD forms characterized by shared features such as inflammation, mitochondrial dysfunction, and overlapping molecular mediators, this integrated network offers promising opportunities for combinatorial therapeutic strategies. Modulation of one cell death pathway may influence others, potentially amplifying therapeutic efficacy. Furthermore, these PCD pathways are highly relevant to immunotherapy outcomes, offering a foundation for synergistic treatment modalities. This review provides an in-depth analysis of the crosstalk between immune-based therapies and PCD, along with a comprehensive discussion of derived therapeutic approaches. However, tumor diversity, resistance mechanisms, and discrepancies between preclinical models and human physiology pose major challenges in applying these findings clinically. The overarching goal is to present innovative insights and strategies to enhance the clinical management of TNBC and ultimately improve patient outcomes.
期刊介绍:
Cellular & Molecular Biology Letters is an international journal dedicated to the dissemination of fundamental knowledge in all areas of cellular and molecular biology, cancer cell biology, and certain aspects of biochemistry, biophysics and biotechnology.