低浓度一价离子溶液下PDMS腔内DNA构象调控。

IF 2.9 2区 化学 Q3 CHEMISTRY, PHYSICAL
The Journal of Physical Chemistry B Pub Date : 2025-10-16 Epub Date: 2025-10-02 DOI:10.1021/acs.jpcb.5c05708
Xia Wang, Mingyan Gao, Ying Wang, Fengyan Hou, Jianjun Dong, Jingyu Wang, Ye Li, Zuobin Wang
{"title":"低浓度一价离子溶液下PDMS腔内DNA构象调控。","authors":"Xia Wang, Mingyan Gao, Ying Wang, Fengyan Hou, Jianjun Dong, Jingyu Wang, Ye Li, Zuobin Wang","doi":"10.1021/acs.jpcb.5c05708","DOIUrl":null,"url":null,"abstract":"<p><p>Low concentrations of monovalent alkali metal ions fail to effectively shield the strong electrostatic repulsion between DNA strands, preventing them from approaching and forming entangled structures. This concentration dilemma limits the application of DNA entanglement-dependent programmable assembly strategies in physiologically relevant low-salt environments. To address this challenge, a PDMS chamber with spatiotemporal regulation capabilities was designed, featuring the following. (1) Spatial regulation: The PDMS evaporation chamber suppressed excessive lateral spreading behavior of droplets, thereby preventing nonuniform dispersion and rapid deposition of DNA and ions. Raman results indicated about 18-fold Na<sup>+</sup> concentration enhancement in evaporation-driven droplets within PDMS chambers before liquid film rupture. (2) Temporal regulation: The liquid phase retention time of a 10 μL droplet was extended to 55-60 min under controlled conditions (22 °C, 55% RH), providing a temporal window for ion-mediated DNA conformational regulation. (3) DNA conformational regulation: Raman analysis revealed that the high-salt microenvironment formed by evaporative concentration in PDMS chambers drove the entanglement of DNA molecules. Atomic force microscopy (AFM) topographies further confirmed denser DNA entanglement networks in PDMS-chambered droplets, with higher surface coverage than those in open-surface droplets. This work presents a strategy for low-concentration monovalent-ion-mediated DNA morphological regulation, with potential applications in microfluidics, biosensing, and programmable nanomaterials.</p>","PeriodicalId":60,"journal":{"name":"The Journal of Physical Chemistry B","volume":" ","pages":"10786-10796"},"PeriodicalIF":2.9000,"publicationDate":"2025-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DNA Conformational Regulation in PDMS Chambers under Low-Concentration Monovalent Ionic Solutions.\",\"authors\":\"Xia Wang, Mingyan Gao, Ying Wang, Fengyan Hou, Jianjun Dong, Jingyu Wang, Ye Li, Zuobin Wang\",\"doi\":\"10.1021/acs.jpcb.5c05708\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Low concentrations of monovalent alkali metal ions fail to effectively shield the strong electrostatic repulsion between DNA strands, preventing them from approaching and forming entangled structures. This concentration dilemma limits the application of DNA entanglement-dependent programmable assembly strategies in physiologically relevant low-salt environments. To address this challenge, a PDMS chamber with spatiotemporal regulation capabilities was designed, featuring the following. (1) Spatial regulation: The PDMS evaporation chamber suppressed excessive lateral spreading behavior of droplets, thereby preventing nonuniform dispersion and rapid deposition of DNA and ions. Raman results indicated about 18-fold Na<sup>+</sup> concentration enhancement in evaporation-driven droplets within PDMS chambers before liquid film rupture. (2) Temporal regulation: The liquid phase retention time of a 10 μL droplet was extended to 55-60 min under controlled conditions (22 °C, 55% RH), providing a temporal window for ion-mediated DNA conformational regulation. (3) DNA conformational regulation: Raman analysis revealed that the high-salt microenvironment formed by evaporative concentration in PDMS chambers drove the entanglement of DNA molecules. Atomic force microscopy (AFM) topographies further confirmed denser DNA entanglement networks in PDMS-chambered droplets, with higher surface coverage than those in open-surface droplets. This work presents a strategy for low-concentration monovalent-ion-mediated DNA morphological regulation, with potential applications in microfluidics, biosensing, and programmable nanomaterials.</p>\",\"PeriodicalId\":60,\"journal\":{\"name\":\"The Journal of Physical Chemistry B\",\"volume\":\" \",\"pages\":\"10786-10796\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry B\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jpcb.5c05708\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/10/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpcb.5c05708","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/10/2 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

低浓度的单价碱金属离子不能有效屏蔽DNA链之间强烈的静电斥力,阻止它们靠近并形成纠缠结构。这种浓度困境限制了DNA纠缠依赖的可编程组装策略在生理相关的低盐环境中的应用。为了解决这一挑战,设计了一个具有时空调节能力的PDMS室,具有以下特点:(1)空间调节:PDMS蒸发室抑制了液滴过度的横向扩散行为,从而防止了DNA和离子的不均匀分散和快速沉积。拉曼结果表明,在液膜破裂之前,PDMS腔内蒸发驱动液滴的Na+浓度增加了18倍。(2)时间调控:在可控条件(22℃,55% RH)下,将10 μL液滴的液相停留时间延长至55 ~ 60 min,为离子介导的DNA构象调控提供了时间窗口。(3) DNA构象调控:拉曼分析表明,PDMS室中蒸发浓度形成的高盐微环境驱动了DNA分子的缠结。原子力显微镜(AFM)形貌进一步证实了pdms液滴中更密集的DNA纠缠网络,其表面覆盖率高于开放表面液滴。这项工作提出了一种低浓度的单价离子介导的DNA形态调控策略,在微流体、生物传感和可编程纳米材料中具有潜在的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DNA Conformational Regulation in PDMS Chambers under Low-Concentration Monovalent Ionic Solutions.

Low concentrations of monovalent alkali metal ions fail to effectively shield the strong electrostatic repulsion between DNA strands, preventing them from approaching and forming entangled structures. This concentration dilemma limits the application of DNA entanglement-dependent programmable assembly strategies in physiologically relevant low-salt environments. To address this challenge, a PDMS chamber with spatiotemporal regulation capabilities was designed, featuring the following. (1) Spatial regulation: The PDMS evaporation chamber suppressed excessive lateral spreading behavior of droplets, thereby preventing nonuniform dispersion and rapid deposition of DNA and ions. Raman results indicated about 18-fold Na+ concentration enhancement in evaporation-driven droplets within PDMS chambers before liquid film rupture. (2) Temporal regulation: The liquid phase retention time of a 10 μL droplet was extended to 55-60 min under controlled conditions (22 °C, 55% RH), providing a temporal window for ion-mediated DNA conformational regulation. (3) DNA conformational regulation: Raman analysis revealed that the high-salt microenvironment formed by evaporative concentration in PDMS chambers drove the entanglement of DNA molecules. Atomic force microscopy (AFM) topographies further confirmed denser DNA entanglement networks in PDMS-chambered droplets, with higher surface coverage than those in open-surface droplets. This work presents a strategy for low-concentration monovalent-ion-mediated DNA morphological regulation, with potential applications in microfluidics, biosensing, and programmable nanomaterials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.80
自引率
9.10%
发文量
965
审稿时长
1.6 months
期刊介绍: An essential criterion for acceptance of research articles in the journal is that they provide new physical insight. Please refer to the New Physical Insights virtual issue on what constitutes new physical insight. Manuscripts that are essentially reporting data or applications of data are, in general, not suitable for publication in JPC B.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信