强耦合非线性Schrödinger方程的一种新的保守数值方法

IF 0.7 Q2 MATHEMATICS
Rıdvan Fatih Örs, Canan Köroğlu, Ayhan Aydın
{"title":"强耦合非线性Schrödinger方程的一种新的保守数值方法","authors":"Rıdvan Fatih Örs,&nbsp;Canan Köroğlu,&nbsp;Ayhan Aydın","doi":"10.1007/s13370-025-01379-6","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, a numerical method based on the conservative finite difference scheme is constructed to numerically solve the strongly coupled nonlinear Schrödinger (SCNLS) equation. Conservative properties such as energy and mass of the SCNLS equation have been proven. In particular a fourth-order central difference scheme is used to discretize the the spatial derivative and a second-order Crank-Nicolson type discretization is used to discretize the temporal derivative. It has been shown that the proposed scheme preserves the discrete mass and energy. The existence of discrete solution is also investigated. Several numerical results are given to demonstrate the preservation properties of the new method. Also, the effect of the linear coupling parameters on the evolution of solitary waves is investigated.</p></div>","PeriodicalId":46107,"journal":{"name":"Afrika Matematika","volume":"36 4","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new conservative numerical method for strongly coupled nonlinear Schrödinger equations\",\"authors\":\"Rıdvan Fatih Örs,&nbsp;Canan Köroğlu,&nbsp;Ayhan Aydın\",\"doi\":\"10.1007/s13370-025-01379-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, a numerical method based on the conservative finite difference scheme is constructed to numerically solve the strongly coupled nonlinear Schrödinger (SCNLS) equation. Conservative properties such as energy and mass of the SCNLS equation have been proven. In particular a fourth-order central difference scheme is used to discretize the the spatial derivative and a second-order Crank-Nicolson type discretization is used to discretize the temporal derivative. It has been shown that the proposed scheme preserves the discrete mass and energy. The existence of discrete solution is also investigated. Several numerical results are given to demonstrate the preservation properties of the new method. Also, the effect of the linear coupling parameters on the evolution of solitary waves is investigated.</p></div>\",\"PeriodicalId\":46107,\"journal\":{\"name\":\"Afrika Matematika\",\"volume\":\"36 4\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Afrika Matematika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13370-025-01379-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Afrika Matematika","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s13370-025-01379-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文构造了一种基于保守有限差分格式的强耦合非线性Schrödinger (SCNLS)方程的数值求解方法。SCNLS方程的能量和质量等保守性质已经得到了证明。特别地,采用四阶中心差分格式对空间导数进行离散,采用二阶Crank-Nicolson型离散对时间导数进行离散。结果表明,该方案保持了离散的质量和能量。研究了离散解的存在性。数值结果验证了新方法的保存性能。研究了线性耦合参数对孤立波演化的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new conservative numerical method for strongly coupled nonlinear Schrödinger equations

In this paper, a numerical method based on the conservative finite difference scheme is constructed to numerically solve the strongly coupled nonlinear Schrödinger (SCNLS) equation. Conservative properties such as energy and mass of the SCNLS equation have been proven. In particular a fourth-order central difference scheme is used to discretize the the spatial derivative and a second-order Crank-Nicolson type discretization is used to discretize the temporal derivative. It has been shown that the proposed scheme preserves the discrete mass and energy. The existence of discrete solution is also investigated. Several numerical results are given to demonstrate the preservation properties of the new method. Also, the effect of the linear coupling parameters on the evolution of solitary waves is investigated.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Afrika Matematika
Afrika Matematika MATHEMATICS-
CiteScore
2.00
自引率
9.10%
发文量
96
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信