{"title":"八阶模拟函数模2的同余式 \\(V_1(q)\\)","authors":"Hirakjyoti Das","doi":"10.1007/s13370-025-01380-z","DOIUrl":null,"url":null,"abstract":"<div><p>Not many of the congruence properties of the eighth-order mock theta function <span>\\(V_1(q)\\)</span>: </p><div><div><span>$$\\begin{aligned} V_1(q):=\\sum _{n=0}^\\infty \\dfrac{q^{(n+1)^2}\\left( -q;q^2\\right) _n}{\\left( q;q^2\\right) _{n+1}}=\\sum _{n=1}^\\infty v_1(n)q^n \\end{aligned}$$</span></div></div><p>have been considered to date. We show that there are self-similarities of the coefficients of <span>\\(V_1(q)\\)</span>. As consequences, we find congruences like the one below. For all <span>\\(n\\ge 0\\)</span> and <span>\\(k\\ge 1\\)</span>, we have </p><div><div><span>$$\\begin{aligned} v_1\\left( 6\\times 29^{2 k} n+ 6\\times 29^{2 k-1} s+\\dfrac{7\\times 29^{2 k-1}+1}{4}\\right) \\equiv 0 \\pmod {2} \\end{aligned}$$</span></div></div><p>for <span>\\(0\\le s< 29\\)</span>, <span>\\(s\\ne 13\\)</span>.</p></div>","PeriodicalId":46107,"journal":{"name":"Afrika Matematika","volume":"36 4","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Congruences Modulo 2 for the Eighth-Order Mock Theta Function \\\\(V_1(q)\\\\)\",\"authors\":\"Hirakjyoti Das\",\"doi\":\"10.1007/s13370-025-01380-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Not many of the congruence properties of the eighth-order mock theta function <span>\\\\(V_1(q)\\\\)</span>: </p><div><div><span>$$\\\\begin{aligned} V_1(q):=\\\\sum _{n=0}^\\\\infty \\\\dfrac{q^{(n+1)^2}\\\\left( -q;q^2\\\\right) _n}{\\\\left( q;q^2\\\\right) _{n+1}}=\\\\sum _{n=1}^\\\\infty v_1(n)q^n \\\\end{aligned}$$</span></div></div><p>have been considered to date. We show that there are self-similarities of the coefficients of <span>\\\\(V_1(q)\\\\)</span>. As consequences, we find congruences like the one below. For all <span>\\\\(n\\\\ge 0\\\\)</span> and <span>\\\\(k\\\\ge 1\\\\)</span>, we have </p><div><div><span>$$\\\\begin{aligned} v_1\\\\left( 6\\\\times 29^{2 k} n+ 6\\\\times 29^{2 k-1} s+\\\\dfrac{7\\\\times 29^{2 k-1}+1}{4}\\\\right) \\\\equiv 0 \\\\pmod {2} \\\\end{aligned}$$</span></div></div><p>for <span>\\\\(0\\\\le s< 29\\\\)</span>, <span>\\\\(s\\\\ne 13\\\\)</span>.</p></div>\",\"PeriodicalId\":46107,\"journal\":{\"name\":\"Afrika Matematika\",\"volume\":\"36 4\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Afrika Matematika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13370-025-01380-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Afrika Matematika","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s13370-025-01380-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
have been considered to date. We show that there are self-similarities of the coefficients of \(V_1(q)\). As consequences, we find congruences like the one below. For all \(n\ge 0\) and \(k\ge 1\), we have