非局部边界阻尼波动方程的适定性及渐近分析

IF 1.7 2区 数学 Q2 MATHEMATICS, APPLIED
Marcelo M. Cavalcanti, Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Cintya A. Okawa
{"title":"非局部边界阻尼波动方程的适定性及渐近分析","authors":"Marcelo M. Cavalcanti,&nbsp;Adel M. Al-Mahdi,&nbsp;Mohammad M. Al-Gharabli,&nbsp;Cintya A. Okawa","doi":"10.1007/s00245-025-10327-6","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, we study a wave equation with nonlocal boundary damping of energy type. We begin by establishing the well-posedness of the problem using the Galerkin method. Next, we investigate the asymptotic behavior of the solution by applying the multiplier method, and we enhance the decay rate through the use of Nakao’s Lemma. Finally, we employ the radial multiplier technique to obtain an optimal polynomial decay rate under this type of damping.</p></div>","PeriodicalId":55566,"journal":{"name":"Applied Mathematics and Optimization","volume":"92 2","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Well-Posedness and Asymptotic Analysis of Wave Equation with Nonlocal Boundary Damping\",\"authors\":\"Marcelo M. Cavalcanti,&nbsp;Adel M. Al-Mahdi,&nbsp;Mohammad M. Al-Gharabli,&nbsp;Cintya A. Okawa\",\"doi\":\"10.1007/s00245-025-10327-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this work, we study a wave equation with nonlocal boundary damping of energy type. We begin by establishing the well-posedness of the problem using the Galerkin method. Next, we investigate the asymptotic behavior of the solution by applying the multiplier method, and we enhance the decay rate through the use of Nakao’s Lemma. Finally, we employ the radial multiplier technique to obtain an optimal polynomial decay rate under this type of damping.</p></div>\",\"PeriodicalId\":55566,\"journal\":{\"name\":\"Applied Mathematics and Optimization\",\"volume\":\"92 2\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics and Optimization\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00245-025-10327-6\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Optimization","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00245-025-10327-6","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了具有能量型非局部边界阻尼的波动方程。我们首先用伽辽金方法建立了问题的适定性。接下来,我们利用乘数法研究了解的渐近行为,并利用Nakao引理提高了衰减率。最后,我们采用径向乘法器技术来获得这种阻尼下的最优多项式衰减率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Well-Posedness and Asymptotic Analysis of Wave Equation with Nonlocal Boundary Damping

In this work, we study a wave equation with nonlocal boundary damping of energy type. We begin by establishing the well-posedness of the problem using the Galerkin method. Next, we investigate the asymptotic behavior of the solution by applying the multiplier method, and we enhance the decay rate through the use of Nakao’s Lemma. Finally, we employ the radial multiplier technique to obtain an optimal polynomial decay rate under this type of damping.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
5.60%
发文量
103
审稿时长
>12 weeks
期刊介绍: The Applied Mathematics and Optimization Journal covers a broad range of mathematical methods in particular those that bridge with optimization and have some connection with applications. Core topics include calculus of variations, partial differential equations, stochastic control, optimization of deterministic or stochastic systems in discrete or continuous time, homogenization, control theory, mean field games, dynamic games and optimal transport. Algorithmic, data analytic, machine learning and numerical methods which support the modeling and analysis of optimization problems are encouraged. Of great interest are papers which show some novel idea in either the theory or model which include some connection with potential applications in science and engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信