Gerardo A. Chacón, Gerardo R. Chacón, Humberto Rafeiro
{"title":"变指数Bergman空间上\\(L^1(\\textbf{D})\\)符号的Toeplitz算子","authors":"Gerardo A. Chacón, Gerardo R. Chacón, Humberto Rafeiro","doi":"10.1007/s43034-025-00469-7","DOIUrl":null,"url":null,"abstract":"<div><p>We establish a boundary condition on the variable exponent <i>p</i>, for which the operators <span>\\(U_z:f\\mapsto (f\\circ \\varphi _z)\\varphi '_z\\)</span> are bounded in <span>\\(A^{p(\\cdot )}(\\textbf{D})\\)</span>. This boundary condition enables us to investigate the boundedness and compactness of Toeplitz operators <span>\\(T_\\varphi\\)</span> with symbols <span>\\(\\varphi\\)</span> in <span>\\(L^1(\\textbf{D})\\)</span>, via the functions <span>\\(z\\mapsto \\Vert U_zT_\\varphi U_z(\\mathbbm {1})\\Vert _{L^{p(\\cdot )}(\\textbf{D})}\\)</span> and <span>\\(z\\mapsto \\Vert U_zT_{\\overline{\\varphi }}U_z(\\mathbbm {1})\\Vert _{L^{p(\\cdot )}(\\textbf{D})}\\)</span>.</p></div>","PeriodicalId":48858,"journal":{"name":"Annals of Functional Analysis","volume":"16 4","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Toeplitz operators with symbols in \\\\(L^1(\\\\textbf{D})\\\\) on Bergman spaces with variable exponent\",\"authors\":\"Gerardo A. Chacón, Gerardo R. Chacón, Humberto Rafeiro\",\"doi\":\"10.1007/s43034-025-00469-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We establish a boundary condition on the variable exponent <i>p</i>, for which the operators <span>\\\\(U_z:f\\\\mapsto (f\\\\circ \\\\varphi _z)\\\\varphi '_z\\\\)</span> are bounded in <span>\\\\(A^{p(\\\\cdot )}(\\\\textbf{D})\\\\)</span>. This boundary condition enables us to investigate the boundedness and compactness of Toeplitz operators <span>\\\\(T_\\\\varphi\\\\)</span> with symbols <span>\\\\(\\\\varphi\\\\)</span> in <span>\\\\(L^1(\\\\textbf{D})\\\\)</span>, via the functions <span>\\\\(z\\\\mapsto \\\\Vert U_zT_\\\\varphi U_z(\\\\mathbbm {1})\\\\Vert _{L^{p(\\\\cdot )}(\\\\textbf{D})}\\\\)</span> and <span>\\\\(z\\\\mapsto \\\\Vert U_zT_{\\\\overline{\\\\varphi }}U_z(\\\\mathbbm {1})\\\\Vert _{L^{p(\\\\cdot )}(\\\\textbf{D})}\\\\)</span>.</p></div>\",\"PeriodicalId\":48858,\"journal\":{\"name\":\"Annals of Functional Analysis\",\"volume\":\"16 4\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s43034-025-00469-7\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s43034-025-00469-7","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Toeplitz operators with symbols in \(L^1(\textbf{D})\) on Bergman spaces with variable exponent
We establish a boundary condition on the variable exponent p, for which the operators \(U_z:f\mapsto (f\circ \varphi _z)\varphi '_z\) are bounded in \(A^{p(\cdot )}(\textbf{D})\). This boundary condition enables us to investigate the boundedness and compactness of Toeplitz operators \(T_\varphi\) with symbols \(\varphi\) in \(L^1(\textbf{D})\), via the functions \(z\mapsto \Vert U_zT_\varphi U_z(\mathbbm {1})\Vert _{L^{p(\cdot )}(\textbf{D})}\) and \(z\mapsto \Vert U_zT_{\overline{\varphi }}U_z(\mathbbm {1})\Vert _{L^{p(\cdot )}(\textbf{D})}\).
期刊介绍:
Annals of Functional Analysis is published by Birkhäuser on behalf of the Tusi Mathematical Research Group.
Ann. Funct. Anal. is a peer-reviewed electronic journal publishing papers of high standards with deep results, new ideas, profound impact, and significant implications in all areas of functional analysis and all modern related topics (e.g., operator theory). Ann. Funct. Anal. normally publishes original research papers numbering 18 or fewer pages in the journal’s style. Longer papers may be submitted to the Banach Journal of Mathematical Analysis or Advances in Operator Theory.
Ann. Funct. Anal. presents the best paper award yearly. The award in the year n is given to the best paper published in the years n-1 and n-2. The referee committee consists of selected editors of the journal.