物联网安全中异常检测的系统回顾:走向量子机器学习方法

IF 5.6 2区 物理与天体物理 Q1 OPTICS
Andres J. Aparcana-Tasayco, Xianjun Deng, Jong Hyuk Park
{"title":"物联网安全中异常检测的系统回顾:走向量子机器学习方法","authors":"Andres J. Aparcana-Tasayco,&nbsp;Xianjun Deng,&nbsp;Jong Hyuk Park","doi":"10.1140/epjqt/s40507-025-00414-6","DOIUrl":null,"url":null,"abstract":"<div><p>Integrating IoT into daily life generates massive data, enabling smart factories and driving advancements in related technologies like cloud/edge computing, ML, and AI. While ML has been used for data analysis and forecasting, challenges such as data complexity, security, and computing limitations persist, particularly in anomaly detection crucial for network security. Recent research indicates the potential of quantum computing and Quantum Machine Learning (QML) to outperform traditional methods in anomaly detection within IoT, an area lacking a comprehensive review. This paper presents a systematic review of Machine Learning-based anomaly detection techniques for IoT security. Despite previous reviews, this study includes the analysis of feature engineering and quantum machine learning techniques in literature. Our findings show that current models have high detection rates on known datasets, but face scalability, real-time processing, and generalization issues. Privacy and security concerns in federated learning (FL) and the effects of data drift also need to be addressed, along with the challenges of 5G and 6G-enabled IoT environments. Future directions include integrating Explainable AI into anomaly detection, exploring adaptive learning techniques, and combining blockchain with machine learning models. The study also highlights the potential of quantum computing to enhance threat detection through quantum machine learning models.</p></div>","PeriodicalId":547,"journal":{"name":"EPJ Quantum Technology","volume":"12 1","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-025-00414-6","citationCount":"0","resultStr":"{\"title\":\"A systematic review of anomaly detection in IoT security: towards quantum machine learning approach\",\"authors\":\"Andres J. Aparcana-Tasayco,&nbsp;Xianjun Deng,&nbsp;Jong Hyuk Park\",\"doi\":\"10.1140/epjqt/s40507-025-00414-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Integrating IoT into daily life generates massive data, enabling smart factories and driving advancements in related technologies like cloud/edge computing, ML, and AI. While ML has been used for data analysis and forecasting, challenges such as data complexity, security, and computing limitations persist, particularly in anomaly detection crucial for network security. Recent research indicates the potential of quantum computing and Quantum Machine Learning (QML) to outperform traditional methods in anomaly detection within IoT, an area lacking a comprehensive review. This paper presents a systematic review of Machine Learning-based anomaly detection techniques for IoT security. Despite previous reviews, this study includes the analysis of feature engineering and quantum machine learning techniques in literature. Our findings show that current models have high detection rates on known datasets, but face scalability, real-time processing, and generalization issues. Privacy and security concerns in federated learning (FL) and the effects of data drift also need to be addressed, along with the challenges of 5G and 6G-enabled IoT environments. Future directions include integrating Explainable AI into anomaly detection, exploring adaptive learning techniques, and combining blockchain with machine learning models. The study also highlights the potential of quantum computing to enhance threat detection through quantum machine learning models.</p></div>\",\"PeriodicalId\":547,\"journal\":{\"name\":\"EPJ Quantum Technology\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-025-00414-6\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EPJ Quantum Technology\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1140/epjqt/s40507-025-00414-6\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPJ Quantum Technology","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1140/epjqt/s40507-025-00414-6","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

将物联网集成到日常生活中会产生大量数据,从而实现智能工厂,并推动云/边缘计算、机器学习和人工智能等相关技术的进步。虽然机器学习已被用于数据分析和预测,但数据复杂性、安全性和计算限制等挑战仍然存在,特别是在对网络安全至关重要的异常检测方面。最近的研究表明,量子计算和量子机器学习(QML)在物联网异常检测方面的潜力超过了传统方法,这是一个缺乏全面审查的领域。本文介绍了基于机器学习的物联网安全异常检测技术的系统综述。尽管之前的评论,本研究包括特征工程和量子机器学习技术在文献中的分析。我们的研究结果表明,目前的模型在已知数据集上具有很高的检测率,但面临可扩展性、实时处理和泛化问题。联邦学习(FL)中的隐私和安全问题以及数据漂移的影响也需要解决,同时还需要解决5G和6g支持的物联网环境的挑战。未来的方向包括将可解释的人工智能集成到异常检测中,探索自适应学习技术,以及将区块链与机器学习模型相结合。该研究还强调了量子计算通过量子机器学习模型增强威胁检测的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A systematic review of anomaly detection in IoT security: towards quantum machine learning approach

Integrating IoT into daily life generates massive data, enabling smart factories and driving advancements in related technologies like cloud/edge computing, ML, and AI. While ML has been used for data analysis and forecasting, challenges such as data complexity, security, and computing limitations persist, particularly in anomaly detection crucial for network security. Recent research indicates the potential of quantum computing and Quantum Machine Learning (QML) to outperform traditional methods in anomaly detection within IoT, an area lacking a comprehensive review. This paper presents a systematic review of Machine Learning-based anomaly detection techniques for IoT security. Despite previous reviews, this study includes the analysis of feature engineering and quantum machine learning techniques in literature. Our findings show that current models have high detection rates on known datasets, but face scalability, real-time processing, and generalization issues. Privacy and security concerns in federated learning (FL) and the effects of data drift also need to be addressed, along with the challenges of 5G and 6G-enabled IoT environments. Future directions include integrating Explainable AI into anomaly detection, exploring adaptive learning techniques, and combining blockchain with machine learning models. The study also highlights the potential of quantum computing to enhance threat detection through quantum machine learning models.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
EPJ Quantum Technology
EPJ Quantum Technology Physics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
7.70
自引率
7.50%
发文量
28
审稿时长
71 days
期刊介绍: Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics. EPJ Quantum Technology covers theoretical and experimental advances in subjects including but not limited to the following: Quantum measurement, metrology and lithography Quantum complex systems, networks and cellular automata Quantum electromechanical systems Quantum optomechanical systems Quantum machines, engineering and nanorobotics Quantum control theory Quantum information, communication and computation Quantum thermodynamics Quantum metamaterials The effect of Casimir forces on micro- and nano-electromechanical systems Quantum biology Quantum sensing Hybrid quantum systems Quantum simulations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信