{"title":"混合光子分子系统中腔增益增强的慢光","authors":"Hua-Jun Chen, Gui-Xia Pan","doi":"10.1140/epjqt/s40507-025-00420-8","DOIUrl":null,"url":null,"abstract":"<div><p>We propose a hybrid photonic molecule system, which includes a two-level system coupled to two optical cavities and the two cavities interact with each other by a phase-dependent photon-photon interaction. The absorption spectra of the two-level system manifest one or two transparent windows (zero absorption deeps) by the dark-mode effect or by breaking the dark-mode effect, which is accompanied by the rapid dispersion leading to the fast or slow light propagation effect. Combining the phased-dependent photon-photon coupling with the interactions between the two-level system and two optical cavities, the dark-mode effect is controllable due to the quantum interference effect, which together determine the process form fast to slow light effect. Moreover, we consider one optical cavity is loss and the other one can be loss, neutral, or gain. The manipulation and periodic switching of group index can be achieved by tuning the modulation phase, and the fast- and slow-light effects are particularly pronounced in the scenario of one optical cavity is active (gain), compared to those are loss or neutral. This study lays the foundation for the application of photon-mediated optical information storage and processing.</p></div>","PeriodicalId":547,"journal":{"name":"EPJ Quantum Technology","volume":"12 1","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-025-00420-8","citationCount":"0","resultStr":"{\"title\":\"Cavity gain enhanced slow light in a hybrid photonic molecule system\",\"authors\":\"Hua-Jun Chen, Gui-Xia Pan\",\"doi\":\"10.1140/epjqt/s40507-025-00420-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We propose a hybrid photonic molecule system, which includes a two-level system coupled to two optical cavities and the two cavities interact with each other by a phase-dependent photon-photon interaction. The absorption spectra of the two-level system manifest one or two transparent windows (zero absorption deeps) by the dark-mode effect or by breaking the dark-mode effect, which is accompanied by the rapid dispersion leading to the fast or slow light propagation effect. Combining the phased-dependent photon-photon coupling with the interactions between the two-level system and two optical cavities, the dark-mode effect is controllable due to the quantum interference effect, which together determine the process form fast to slow light effect. Moreover, we consider one optical cavity is loss and the other one can be loss, neutral, or gain. The manipulation and periodic switching of group index can be achieved by tuning the modulation phase, and the fast- and slow-light effects are particularly pronounced in the scenario of one optical cavity is active (gain), compared to those are loss or neutral. This study lays the foundation for the application of photon-mediated optical information storage and processing.</p></div>\",\"PeriodicalId\":547,\"journal\":{\"name\":\"EPJ Quantum Technology\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-025-00420-8\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EPJ Quantum Technology\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1140/epjqt/s40507-025-00420-8\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPJ Quantum Technology","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1140/epjqt/s40507-025-00420-8","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
Cavity gain enhanced slow light in a hybrid photonic molecule system
We propose a hybrid photonic molecule system, which includes a two-level system coupled to two optical cavities and the two cavities interact with each other by a phase-dependent photon-photon interaction. The absorption spectra of the two-level system manifest one or two transparent windows (zero absorption deeps) by the dark-mode effect or by breaking the dark-mode effect, which is accompanied by the rapid dispersion leading to the fast or slow light propagation effect. Combining the phased-dependent photon-photon coupling with the interactions between the two-level system and two optical cavities, the dark-mode effect is controllable due to the quantum interference effect, which together determine the process form fast to slow light effect. Moreover, we consider one optical cavity is loss and the other one can be loss, neutral, or gain. The manipulation and periodic switching of group index can be achieved by tuning the modulation phase, and the fast- and slow-light effects are particularly pronounced in the scenario of one optical cavity is active (gain), compared to those are loss or neutral. This study lays the foundation for the application of photon-mediated optical information storage and processing.
期刊介绍:
Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics.
EPJ Quantum Technology covers theoretical and experimental advances in subjects including but not limited to the following:
Quantum measurement, metrology and lithography
Quantum complex systems, networks and cellular automata
Quantum electromechanical systems
Quantum optomechanical systems
Quantum machines, engineering and nanorobotics
Quantum control theory
Quantum information, communication and computation
Quantum thermodynamics
Quantum metamaterials
The effect of Casimir forces on micro- and nano-electromechanical systems
Quantum biology
Quantum sensing
Hybrid quantum systems
Quantum simulations.