梯度爱因斯坦型Kähler流形的分类 \(\alpha =0\)

IF 1.4 3区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Shun Maeta
{"title":"梯度爱因斯坦型Kähler流形的分类 \\(\\alpha =0\\)","authors":"Shun Maeta","doi":"10.1007/s11005-025-01992-3","DOIUrl":null,"url":null,"abstract":"<div><p>Thanks to an ambitious project initiated by Catino, Mastrolia, Monticelli, and Rigoli, which aims to provide a unified viewpoint for various geometric solitons, many classes, including Ricci solitons, Yamabe solitons, <i>k</i>-Yamabe solitons, quasi-Yamabe solitons, and conformal solitons, can now be studied under a unified framework known as Einstein-type manifolds. Einstein-type manifolds are characterized by four constants, denoted by <span>\\(\\alpha , \\beta , \\mu \\)</span>, and <span>\\(\\rho \\)</span>. In this paper, we completely classify all non-trivial, complete gradient Einstein-type Kähler manifolds with <span>\\(\\alpha = 0\\)</span>. As a corollary, we obtain rotational symmetry for many classes. In particular, we show that any non-trivial complete quasi-Yamabe gradient soliton on Kähler manifolds is rotationally symmetric.</p></div>","PeriodicalId":685,"journal":{"name":"Letters in Mathematical Physics","volume":"115 5","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11005-025-01992-3.pdf","citationCount":"0","resultStr":"{\"title\":\"Classification of gradient Einstein-type Kähler manifolds with \\\\(\\\\alpha =0\\\\)\",\"authors\":\"Shun Maeta\",\"doi\":\"10.1007/s11005-025-01992-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Thanks to an ambitious project initiated by Catino, Mastrolia, Monticelli, and Rigoli, which aims to provide a unified viewpoint for various geometric solitons, many classes, including Ricci solitons, Yamabe solitons, <i>k</i>-Yamabe solitons, quasi-Yamabe solitons, and conformal solitons, can now be studied under a unified framework known as Einstein-type manifolds. Einstein-type manifolds are characterized by four constants, denoted by <span>\\\\(\\\\alpha , \\\\beta , \\\\mu \\\\)</span>, and <span>\\\\(\\\\rho \\\\)</span>. In this paper, we completely classify all non-trivial, complete gradient Einstein-type Kähler manifolds with <span>\\\\(\\\\alpha = 0\\\\)</span>. As a corollary, we obtain rotational symmetry for many classes. In particular, we show that any non-trivial complete quasi-Yamabe gradient soliton on Kähler manifolds is rotationally symmetric.</p></div>\",\"PeriodicalId\":685,\"journal\":{\"name\":\"Letters in Mathematical Physics\",\"volume\":\"115 5\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s11005-025-01992-3.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Letters in Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11005-025-01992-3\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Letters in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11005-025-01992-3","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

由于Catino、Mastrolia、Monticelli和Rigoli发起了一个雄心勃勃的项目,旨在为各种几何孤子提供一个统一的观点,许多类别,包括Ricci孤子、Yamabe孤子、k-Yamabe孤子、拟Yamabe孤子和共形孤子,现在可以在一个被称为爱因斯坦型流形的统一框架下研究。爱因斯坦型流形由四个常数表征,分别用\(\alpha , \beta , \mu \)和\(\rho \)表示。本文用\(\alpha = 0\)对所有非平凡、完全梯度爱因斯坦型Kähler流形进行了完全分类。作为推论,我们得到了许多类的旋转对称。特别地,我们证明了Kähler流形上的任何非平凡完全拟yamabe梯度孤子是旋转对称的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Classification of gradient Einstein-type Kähler manifolds with \(\alpha =0\)

Thanks to an ambitious project initiated by Catino, Mastrolia, Monticelli, and Rigoli, which aims to provide a unified viewpoint for various geometric solitons, many classes, including Ricci solitons, Yamabe solitons, k-Yamabe solitons, quasi-Yamabe solitons, and conformal solitons, can now be studied under a unified framework known as Einstein-type manifolds. Einstein-type manifolds are characterized by four constants, denoted by \(\alpha , \beta , \mu \), and \(\rho \). In this paper, we completely classify all non-trivial, complete gradient Einstein-type Kähler manifolds with \(\alpha = 0\). As a corollary, we obtain rotational symmetry for many classes. In particular, we show that any non-trivial complete quasi-Yamabe gradient soliton on Kähler manifolds is rotationally symmetric.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Letters in Mathematical Physics
Letters in Mathematical Physics 物理-物理:数学物理
CiteScore
2.40
自引率
8.30%
发文量
111
审稿时长
3 months
期刊介绍: The aim of Letters in Mathematical Physics is to attract the community''s attention on important and original developments in the area of mathematical physics and contemporary theoretical physics. The journal publishes letters and longer research articles, occasionally also articles containing topical reviews. We are committed to both fast publication and careful refereeing. In addition, the journal offers important contributions to modern mathematics in fields which have a potential physical application, and important developments in theoretical physics which have potential mathematical impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信