{"title":"梯度爱因斯坦型Kähler流形的分类 \\(\\alpha =0\\)","authors":"Shun Maeta","doi":"10.1007/s11005-025-01992-3","DOIUrl":null,"url":null,"abstract":"<div><p>Thanks to an ambitious project initiated by Catino, Mastrolia, Monticelli, and Rigoli, which aims to provide a unified viewpoint for various geometric solitons, many classes, including Ricci solitons, Yamabe solitons, <i>k</i>-Yamabe solitons, quasi-Yamabe solitons, and conformal solitons, can now be studied under a unified framework known as Einstein-type manifolds. Einstein-type manifolds are characterized by four constants, denoted by <span>\\(\\alpha , \\beta , \\mu \\)</span>, and <span>\\(\\rho \\)</span>. In this paper, we completely classify all non-trivial, complete gradient Einstein-type Kähler manifolds with <span>\\(\\alpha = 0\\)</span>. As a corollary, we obtain rotational symmetry for many classes. In particular, we show that any non-trivial complete quasi-Yamabe gradient soliton on Kähler manifolds is rotationally symmetric.</p></div>","PeriodicalId":685,"journal":{"name":"Letters in Mathematical Physics","volume":"115 5","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11005-025-01992-3.pdf","citationCount":"0","resultStr":"{\"title\":\"Classification of gradient Einstein-type Kähler manifolds with \\\\(\\\\alpha =0\\\\)\",\"authors\":\"Shun Maeta\",\"doi\":\"10.1007/s11005-025-01992-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Thanks to an ambitious project initiated by Catino, Mastrolia, Monticelli, and Rigoli, which aims to provide a unified viewpoint for various geometric solitons, many classes, including Ricci solitons, Yamabe solitons, <i>k</i>-Yamabe solitons, quasi-Yamabe solitons, and conformal solitons, can now be studied under a unified framework known as Einstein-type manifolds. Einstein-type manifolds are characterized by four constants, denoted by <span>\\\\(\\\\alpha , \\\\beta , \\\\mu \\\\)</span>, and <span>\\\\(\\\\rho \\\\)</span>. In this paper, we completely classify all non-trivial, complete gradient Einstein-type Kähler manifolds with <span>\\\\(\\\\alpha = 0\\\\)</span>. As a corollary, we obtain rotational symmetry for many classes. In particular, we show that any non-trivial complete quasi-Yamabe gradient soliton on Kähler manifolds is rotationally symmetric.</p></div>\",\"PeriodicalId\":685,\"journal\":{\"name\":\"Letters in Mathematical Physics\",\"volume\":\"115 5\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s11005-025-01992-3.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Letters in Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11005-025-01992-3\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Letters in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11005-025-01992-3","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
Classification of gradient Einstein-type Kähler manifolds with \(\alpha =0\)
Thanks to an ambitious project initiated by Catino, Mastrolia, Monticelli, and Rigoli, which aims to provide a unified viewpoint for various geometric solitons, many classes, including Ricci solitons, Yamabe solitons, k-Yamabe solitons, quasi-Yamabe solitons, and conformal solitons, can now be studied under a unified framework known as Einstein-type manifolds. Einstein-type manifolds are characterized by four constants, denoted by \(\alpha , \beta , \mu \), and \(\rho \). In this paper, we completely classify all non-trivial, complete gradient Einstein-type Kähler manifolds with \(\alpha = 0\). As a corollary, we obtain rotational symmetry for many classes. In particular, we show that any non-trivial complete quasi-Yamabe gradient soliton on Kähler manifolds is rotationally symmetric.
期刊介绍:
The aim of Letters in Mathematical Physics is to attract the community''s attention on important and original developments in the area of mathematical physics and contemporary theoretical physics. The journal publishes letters and longer research articles, occasionally also articles containing topical reviews. We are committed to both fast publication and careful refereeing. In addition, the journal offers important contributions to modern mathematics in fields which have a potential physical application, and important developments in theoretical physics which have potential mathematical impact.