横向负弯曲叶理的拓扑结构和底谱

IF 0.7 3区 数学 Q3 MATHEMATICS
Fabrice Baudoin
{"title":"横向负弯曲叶理的拓扑结构和底谱","authors":"Fabrice Baudoin","doi":"10.1007/s10455-025-10020-5","DOIUrl":null,"url":null,"abstract":"<div><p>We show that for any Riemannian foliation with a simply connected and negatively curved leaf space the normal exponential map of a leaf is a diffeomorphism. As an application, if the leaves are furthermore minimal submanifolds, we give a sharp estimate for the bottom of the spectrum of such a Riemannian manifold. Our proof of the spectral estimate also yields an estimate for the bottom of the spectrum of the horizontal Laplacian.</p></div>","PeriodicalId":8268,"journal":{"name":"Annals of Global Analysis and Geometry","volume":"68 3","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10455-025-10020-5.pdf","citationCount":"0","resultStr":"{\"title\":\"Topology and bottom spectrum of transversally negatively curved foliations\",\"authors\":\"Fabrice Baudoin\",\"doi\":\"10.1007/s10455-025-10020-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We show that for any Riemannian foliation with a simply connected and negatively curved leaf space the normal exponential map of a leaf is a diffeomorphism. As an application, if the leaves are furthermore minimal submanifolds, we give a sharp estimate for the bottom of the spectrum of such a Riemannian manifold. Our proof of the spectral estimate also yields an estimate for the bottom of the spectrum of the horizontal Laplacian.</p></div>\",\"PeriodicalId\":8268,\"journal\":{\"name\":\"Annals of Global Analysis and Geometry\",\"volume\":\"68 3\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10455-025-10020-5.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Global Analysis and Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10455-025-10020-5\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Global Analysis and Geometry","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10455-025-10020-5","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了对于任何具有单连通负弯曲叶空间的黎曼叶化,叶的法向指数映射是一个微分同构。作为一个应用,如果叶是进一步极小子流形,我们给出了这种黎曼流形谱底的一个尖锐估计。我们对谱估计的证明也得到了水平拉普拉斯函数谱底的估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Topology and bottom spectrum of transversally negatively curved foliations

We show that for any Riemannian foliation with a simply connected and negatively curved leaf space the normal exponential map of a leaf is a diffeomorphism. As an application, if the leaves are furthermore minimal submanifolds, we give a sharp estimate for the bottom of the spectrum of such a Riemannian manifold. Our proof of the spectral estimate also yields an estimate for the bottom of the spectrum of the horizontal Laplacian.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
70
审稿时长
6-12 weeks
期刊介绍: This journal examines global problems of geometry and analysis as well as the interactions between these fields and their application to problems of theoretical physics. It contributes to an enlargement of the international exchange of research results in the field. The areas covered in Annals of Global Analysis and Geometry include: global analysis, differential geometry, complex manifolds and related results from complex analysis and algebraic geometry, Lie groups, Lie transformation groups and harmonic analysis, variational calculus, applications of differential geometry and global analysis to problems of theoretical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信