混凝土拱坝性能的预测建模:评价随机森林和径向基函数网络的有效性

A. M. Babadi, H. Mirzabozorg, K. Baharan
{"title":"混凝土拱坝性能的预测建模:评价随机森林和径向基函数网络的有效性","authors":"A. M. Babadi,&nbsp;H. Mirzabozorg,&nbsp;K. Baharan","doi":"10.1007/s43503-025-00071-9","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigates the application of established open-source machine learning tools, specifically CatBoost, XGBoost, LightGBM, and TensorFlow, which are based on Forest and Radial Basis Function Networks, to predict and analyze the structural behavior of concrete arch dams. Utilizing the Karun-I dam as a case study, the research assesses the performance of various machine learning frameworks. The results demonstrate that Random Forest-based methods achieve superior prediction accuracy and computational efficiency in comparison to Radial Basis Function Networks. Additionally, the analysis emphasizes the critical influence of lake levels as the primary factor impacting dam displacement, as revealed through feature importance evaluation. Overall, this research underscores the promising potential of machine learning in enhancing structural health monitoring for large dams, offering significant insights that contribute to the improvement of safety measures and operational efficiency in dam management.</p></div>","PeriodicalId":72138,"journal":{"name":"AI in civil engineering","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s43503-025-00071-9.pdf","citationCount":"0","resultStr":"{\"title\":\"Predictive modeling of concrete arch dam behavior: evaluating the efficacy of Random Forest and Radial Basis Function Networks\",\"authors\":\"A. M. Babadi,&nbsp;H. Mirzabozorg,&nbsp;K. Baharan\",\"doi\":\"10.1007/s43503-025-00071-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study investigates the application of established open-source machine learning tools, specifically CatBoost, XGBoost, LightGBM, and TensorFlow, which are based on Forest and Radial Basis Function Networks, to predict and analyze the structural behavior of concrete arch dams. Utilizing the Karun-I dam as a case study, the research assesses the performance of various machine learning frameworks. The results demonstrate that Random Forest-based methods achieve superior prediction accuracy and computational efficiency in comparison to Radial Basis Function Networks. Additionally, the analysis emphasizes the critical influence of lake levels as the primary factor impacting dam displacement, as revealed through feature importance evaluation. Overall, this research underscores the promising potential of machine learning in enhancing structural health monitoring for large dams, offering significant insights that contribute to the improvement of safety measures and operational efficiency in dam management.</p></div>\",\"PeriodicalId\":72138,\"journal\":{\"name\":\"AI in civil engineering\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s43503-025-00071-9.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AI in civil engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s43503-025-00071-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AI in civil engineering","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s43503-025-00071-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究研究了基于森林和径向基函数网络的开源机器学习工具CatBoost、XGBoost、LightGBM和TensorFlow的应用,以预测和分析混凝土拱坝的结构行为。利用Karun-I水坝作为案例研究,该研究评估了各种机器学习框架的性能。结果表明,与径向基函数网络相比,基于随机森林的方法具有更高的预测精度和计算效率。此外,通过特征重要性评价,强调湖泊水位是影响大坝位移的主要因素。总的来说,这项研究强调了机器学习在加强大型水坝结构健康监测方面的巨大潜力,为改善水坝管理的安全措施和运营效率提供了重要的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predictive modeling of concrete arch dam behavior: evaluating the efficacy of Random Forest and Radial Basis Function Networks

This study investigates the application of established open-source machine learning tools, specifically CatBoost, XGBoost, LightGBM, and TensorFlow, which are based on Forest and Radial Basis Function Networks, to predict and analyze the structural behavior of concrete arch dams. Utilizing the Karun-I dam as a case study, the research assesses the performance of various machine learning frameworks. The results demonstrate that Random Forest-based methods achieve superior prediction accuracy and computational efficiency in comparison to Radial Basis Function Networks. Additionally, the analysis emphasizes the critical influence of lake levels as the primary factor impacting dam displacement, as revealed through feature importance evaluation. Overall, this research underscores the promising potential of machine learning in enhancing structural health monitoring for large dams, offering significant insights that contribute to the improvement of safety measures and operational efficiency in dam management.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信