{"title":"有向图的哈尔-拉普拉斯式","authors":"Theodor-Adrian Badea;Bogdan Dumitrescu","doi":"10.1109/TSIPN.2025.3611242","DOIUrl":null,"url":null,"abstract":"This paper introduces a novel Laplacian matrix aiming to enable the construction of spectral convolutional networks and to extend the signal processing applications for directed graphs. Our proposal is inspired by a Haar-like transformation and produces a Hermitian matrix which is not only in one-to-one relation with the adjacency matrix, preserving both direction and weight information, but also enjoys desirable additional properties like scaling robustness, sensitivity, continuity, and directionality. We take a theoretical standpoint and support the conformity of our approach with spectral graph theory. Then, we address two use cases: graph learning (by introducing HaarNet, a spectral graph convolutional network built with our Haar-Laplacian) and graph signal processing. We show that our approach gives better results in applications like weight prediction and denoising on directed graphs.","PeriodicalId":56268,"journal":{"name":"IEEE Transactions on Signal and Information Processing over Networks","volume":"11 ","pages":"1238-1253"},"PeriodicalIF":3.0000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Haar-Laplacian for Directed Graphs\",\"authors\":\"Theodor-Adrian Badea;Bogdan Dumitrescu\",\"doi\":\"10.1109/TSIPN.2025.3611242\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces a novel Laplacian matrix aiming to enable the construction of spectral convolutional networks and to extend the signal processing applications for directed graphs. Our proposal is inspired by a Haar-like transformation and produces a Hermitian matrix which is not only in one-to-one relation with the adjacency matrix, preserving both direction and weight information, but also enjoys desirable additional properties like scaling robustness, sensitivity, continuity, and directionality. We take a theoretical standpoint and support the conformity of our approach with spectral graph theory. Then, we address two use cases: graph learning (by introducing HaarNet, a spectral graph convolutional network built with our Haar-Laplacian) and graph signal processing. We show that our approach gives better results in applications like weight prediction and denoising on directed graphs.\",\"PeriodicalId\":56268,\"journal\":{\"name\":\"IEEE Transactions on Signal and Information Processing over Networks\",\"volume\":\"11 \",\"pages\":\"1238-1253\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Signal and Information Processing over Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11168271/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Signal and Information Processing over Networks","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11168271/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
This paper introduces a novel Laplacian matrix aiming to enable the construction of spectral convolutional networks and to extend the signal processing applications for directed graphs. Our proposal is inspired by a Haar-like transformation and produces a Hermitian matrix which is not only in one-to-one relation with the adjacency matrix, preserving both direction and weight information, but also enjoys desirable additional properties like scaling robustness, sensitivity, continuity, and directionality. We take a theoretical standpoint and support the conformity of our approach with spectral graph theory. Then, we address two use cases: graph learning (by introducing HaarNet, a spectral graph convolutional network built with our Haar-Laplacian) and graph signal processing. We show that our approach gives better results in applications like weight prediction and denoising on directed graphs.
期刊介绍:
The IEEE Transactions on Signal and Information Processing over Networks publishes high-quality papers that extend the classical notions of processing of signals defined over vector spaces (e.g. time and space) to processing of signals and information (data) defined over networks, potentially dynamically varying. In signal processing over networks, the topology of the network may define structural relationships in the data, or may constrain processing of the data. Topics include distributed algorithms for filtering, detection, estimation, adaptation and learning, model selection, data fusion, and diffusion or evolution of information over such networks, and applications of distributed signal processing.