Unico:异构组学数据中细胞类型分辨率基因组学的统一模型

IF 10.1 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Zeyuan Johnson Chen, Elior Rahmani, Eran Halperin
{"title":"Unico:异构组学数据中细胞类型分辨率基因组学的统一模型","authors":"Zeyuan Johnson Chen, Elior Rahmani, Eran Halperin","doi":"10.1186/s13059-025-03776-3","DOIUrl":null,"url":null,"abstract":"Most population-scale genomic datasets collected to date consist of “bulk” samples obtained from heterogeneous tissues, reflecting mixtures of different cell types. We introduce Unico, a Unified cross-omics computational method designed to deconvolve standard two-dimensional bulk matrices (samples by features) into three-dimensional tensors (samples by features by cell types). Unico is the first principled model-based deconvolution method that is theoretically justified for any tissue-level genomic data. By deconvolving bulk gene expression and DNA methylation datasets, we demonstrate Unico’s superior performance compared to existing methods, enhancing the ability to conduct powerful, large-scale genomic studies at cell-type resolution.","PeriodicalId":12611,"journal":{"name":"Genome Biology","volume":"41 1","pages":""},"PeriodicalIF":10.1000,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unico: a unified model for cell-type resolution genomics from heterogeneous omics data\",\"authors\":\"Zeyuan Johnson Chen, Elior Rahmani, Eran Halperin\",\"doi\":\"10.1186/s13059-025-03776-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Most population-scale genomic datasets collected to date consist of “bulk” samples obtained from heterogeneous tissues, reflecting mixtures of different cell types. We introduce Unico, a Unified cross-omics computational method designed to deconvolve standard two-dimensional bulk matrices (samples by features) into three-dimensional tensors (samples by features by cell types). Unico is the first principled model-based deconvolution method that is theoretically justified for any tissue-level genomic data. By deconvolving bulk gene expression and DNA methylation datasets, we demonstrate Unico’s superior performance compared to existing methods, enhancing the ability to conduct powerful, large-scale genomic studies at cell-type resolution.\",\"PeriodicalId\":12611,\"journal\":{\"name\":\"Genome Biology\",\"volume\":\"41 1\",\"pages\":\"\"},\"PeriodicalIF\":10.1000,\"publicationDate\":\"2025-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genome Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13059-025-03776-3\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13059-025-03776-3","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

迄今为止收集的大多数人口规模的基因组数据集包括从异质组织中获得的“散装”样本,反映了不同细胞类型的混合物。我们介绍Unico,一种统一的跨组学计算方法,旨在将标准二维体矩阵(按特征采样)反卷积成三维张量(按细胞类型按特征采样)。Unico是第一个原则性的基于模型的反卷积方法,理论上适用于任何组织水平的基因组数据。通过对大量基因表达和DNA甲基化数据集进行反卷积,我们证明了Unico与现有方法相比的优越性能,增强了在细胞类型分辨率下进行强大的大规模基因组研究的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unico: a unified model for cell-type resolution genomics from heterogeneous omics data
Most population-scale genomic datasets collected to date consist of “bulk” samples obtained from heterogeneous tissues, reflecting mixtures of different cell types. We introduce Unico, a Unified cross-omics computational method designed to deconvolve standard two-dimensional bulk matrices (samples by features) into three-dimensional tensors (samples by features by cell types). Unico is the first principled model-based deconvolution method that is theoretically justified for any tissue-level genomic data. By deconvolving bulk gene expression and DNA methylation datasets, we demonstrate Unico’s superior performance compared to existing methods, enhancing the ability to conduct powerful, large-scale genomic studies at cell-type resolution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Genome Biology
Genome Biology Biochemistry, Genetics and Molecular Biology-Genetics
CiteScore
21.00
自引率
3.30%
发文量
241
审稿时长
2 months
期刊介绍: Genome Biology stands as a premier platform for exceptional research across all domains of biology and biomedicine, explored through a genomic and post-genomic lens. With an impressive impact factor of 12.3 (2022),* the journal secures its position as the 3rd-ranked research journal in the Genetics and Heredity category and the 2nd-ranked research journal in the Biotechnology and Applied Microbiology category by Thomson Reuters. Notably, Genome Biology holds the distinction of being the highest-ranked open-access journal in this category. Our dedicated team of highly trained in-house Editors collaborates closely with our esteemed Editorial Board of international experts, ensuring the journal remains on the forefront of scientific advances and community standards. Regular engagement with researchers at conferences and institute visits underscores our commitment to staying abreast of the latest developments in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信