Mitchell Conery, James A. Pippin, Yadav Wagley, Khanh Trang, Matthew C. Pahl, David A. Villani, Lacey J. Favazzo, Cheryl L. Ackert-Bicknell, Michael J. Zuscik, Eugene Katsevich, Andrew D. Wells, Babette S. Zemel, Benjamin F. Voight, Kurt D. Hankenson, Alessandra Chesi, Struan F. A. Grant
{"title":"基于gwas的数据整合和非编码CRISPRi筛选阐明了骨矿物质密度的遗传病因","authors":"Mitchell Conery, James A. Pippin, Yadav Wagley, Khanh Trang, Matthew C. Pahl, David A. Villani, Lacey J. Favazzo, Cheryl L. Ackert-Bicknell, Michael J. Zuscik, Eugene Katsevich, Andrew D. Wells, Babette S. Zemel, Benjamin F. Voight, Kurt D. Hankenson, Alessandra Chesi, Struan F. A. Grant","doi":"10.1186/s13059-025-03802-4","DOIUrl":null,"url":null,"abstract":"Over 1100 independent signals have been identified with genome-wide association studies (GWAS) for bone mineral density (BMD), a key risk factor for mortality-increasing fragility fractures; however, the effector gene(s) for most remain unknown. We execute a CRISPRi screen in human fetal osteoblasts (hFOBs) with single-cell RNA-seq read-out for 89 non-coding elements predicted to regulate osteoblast gene expression at BMD GWAS loci. The BMD relevance of hFOBs is supported by heritability enrichment from stratified LD-score regression involving 98 cell types grouped into 15 tissues. Twenty-three genes show perturbation in the screen, with four (ARID5B, CC2D1B, EIF4G2, and NCOA3) exhibiting consistent effects upon siRNA knockdown on three measures of osteoblast maturation and mineralization. Lastly, additional heritability enrichments, genetic correlations, and multi-trait fine-mapping unexpectedly reveal that many BMD GWAS signals are pleiotropic and likely mediate their effects via non-bone tissues. Our results provide a roadmap for how single-cell CRISPRi screens may be applied to the challenging task of resolving effector gene identities at all BMD GWAS loci. Extending our CRISPRi screening approach to other tissues could play a key role in fully elucidating the etiology of BMD.","PeriodicalId":12611,"journal":{"name":"Genome Biology","volume":"220 1","pages":""},"PeriodicalIF":10.1000,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GWAS-informed data integration and non-coding CRISPRi screen illuminate genetic etiology of bone mineral density\",\"authors\":\"Mitchell Conery, James A. Pippin, Yadav Wagley, Khanh Trang, Matthew C. Pahl, David A. Villani, Lacey J. Favazzo, Cheryl L. Ackert-Bicknell, Michael J. Zuscik, Eugene Katsevich, Andrew D. Wells, Babette S. Zemel, Benjamin F. Voight, Kurt D. Hankenson, Alessandra Chesi, Struan F. A. Grant\",\"doi\":\"10.1186/s13059-025-03802-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Over 1100 independent signals have been identified with genome-wide association studies (GWAS) for bone mineral density (BMD), a key risk factor for mortality-increasing fragility fractures; however, the effector gene(s) for most remain unknown. We execute a CRISPRi screen in human fetal osteoblasts (hFOBs) with single-cell RNA-seq read-out for 89 non-coding elements predicted to regulate osteoblast gene expression at BMD GWAS loci. The BMD relevance of hFOBs is supported by heritability enrichment from stratified LD-score regression involving 98 cell types grouped into 15 tissues. Twenty-three genes show perturbation in the screen, with four (ARID5B, CC2D1B, EIF4G2, and NCOA3) exhibiting consistent effects upon siRNA knockdown on three measures of osteoblast maturation and mineralization. Lastly, additional heritability enrichments, genetic correlations, and multi-trait fine-mapping unexpectedly reveal that many BMD GWAS signals are pleiotropic and likely mediate their effects via non-bone tissues. Our results provide a roadmap for how single-cell CRISPRi screens may be applied to the challenging task of resolving effector gene identities at all BMD GWAS loci. Extending our CRISPRi screening approach to other tissues could play a key role in fully elucidating the etiology of BMD.\",\"PeriodicalId\":12611,\"journal\":{\"name\":\"Genome Biology\",\"volume\":\"220 1\",\"pages\":\"\"},\"PeriodicalIF\":10.1000,\"publicationDate\":\"2025-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genome Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13059-025-03802-4\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13059-025-03802-4","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
GWAS-informed data integration and non-coding CRISPRi screen illuminate genetic etiology of bone mineral density
Over 1100 independent signals have been identified with genome-wide association studies (GWAS) for bone mineral density (BMD), a key risk factor for mortality-increasing fragility fractures; however, the effector gene(s) for most remain unknown. We execute a CRISPRi screen in human fetal osteoblasts (hFOBs) with single-cell RNA-seq read-out for 89 non-coding elements predicted to regulate osteoblast gene expression at BMD GWAS loci. The BMD relevance of hFOBs is supported by heritability enrichment from stratified LD-score regression involving 98 cell types grouped into 15 tissues. Twenty-three genes show perturbation in the screen, with four (ARID5B, CC2D1B, EIF4G2, and NCOA3) exhibiting consistent effects upon siRNA knockdown on three measures of osteoblast maturation and mineralization. Lastly, additional heritability enrichments, genetic correlations, and multi-trait fine-mapping unexpectedly reveal that many BMD GWAS signals are pleiotropic and likely mediate their effects via non-bone tissues. Our results provide a roadmap for how single-cell CRISPRi screens may be applied to the challenging task of resolving effector gene identities at all BMD GWAS loci. Extending our CRISPRi screening approach to other tissues could play a key role in fully elucidating the etiology of BMD.
Genome BiologyBiochemistry, Genetics and Molecular Biology-Genetics
CiteScore
21.00
自引率
3.30%
发文量
241
审稿时长
2 months
期刊介绍:
Genome Biology stands as a premier platform for exceptional research across all domains of biology and biomedicine, explored through a genomic and post-genomic lens.
With an impressive impact factor of 12.3 (2022),* the journal secures its position as the 3rd-ranked research journal in the Genetics and Heredity category and the 2nd-ranked research journal in the Biotechnology and Applied Microbiology category by Thomson Reuters. Notably, Genome Biology holds the distinction of being the highest-ranked open-access journal in this category.
Our dedicated team of highly trained in-house Editors collaborates closely with our esteemed Editorial Board of international experts, ensuring the journal remains on the forefront of scientific advances and community standards. Regular engagement with researchers at conferences and institute visits underscores our commitment to staying abreast of the latest developments in the field.