{"title":"生物学驱动的洞察单细胞基础模型的力量","authors":"Jialu Wu, Qing Ye, Yilin Wang, Renling Hu, Yiheng Zhu, Mingze Yin, Tianyue Wang, Jike Wang, Chang-Yu Hsieh, Tingjun Hou","doi":"10.1186/s13059-025-03781-6","DOIUrl":null,"url":null,"abstract":"Single-cell foundation models (scFMs) have emerged as powerful tools for integrating heterogeneous datasets and exploring biological systems. Despite high expectations, their ability to extract unique biological insights beyond standard methods and their advantages over traditional approaches in specific tasks remain unclear. Here, we present a comprehensive benchmark study of six scFMs against well-established baselines under realistic conditions, encompassing two gene-level and four cell-level tasks. Pre-clinical batch integration and cell type annotation are evaluated across five datasets with diverse biological conditions, while clinically relevant tasks, such as cancer cell identification and drug sensitivity prediction, are assessed across seven cancer types and four drugs. Model performance is evaluated using 12 metrics spanning unsupervised, supervised, and knowledge-based approaches, including scGraph-OntoRWR, a novel metric designed to uncover intrinsic knowledge encoded by scFMs. We provide holistic rankings from dataset-specific to general performance to guide model selection. Our findings reveal that scFMs are robust and versatile tools for diverse applications while simpler machine learning models are more adept at efficiently adapting to specific datasets, particularly under resource constraints. Notably, no single scFM consistently outperforms others across all tasks, emphasizing the need for tailored model selection based on factors such as dataset size, task complexity, biological interpretability, and computational resources. This benchmark introduces novel evaluation perspectives, identifying the strengths and limitations of current scFMs, and paves the way for their effective application in biological and clinical research, including cell atlas construction, tumor microenvironment studies, and treatment decision-making.","PeriodicalId":12611,"journal":{"name":"Genome Biology","volume":"99 1","pages":""},"PeriodicalIF":10.1000,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biology-driven insights into the power of single-cell foundation models\",\"authors\":\"Jialu Wu, Qing Ye, Yilin Wang, Renling Hu, Yiheng Zhu, Mingze Yin, Tianyue Wang, Jike Wang, Chang-Yu Hsieh, Tingjun Hou\",\"doi\":\"10.1186/s13059-025-03781-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Single-cell foundation models (scFMs) have emerged as powerful tools for integrating heterogeneous datasets and exploring biological systems. Despite high expectations, their ability to extract unique biological insights beyond standard methods and their advantages over traditional approaches in specific tasks remain unclear. Here, we present a comprehensive benchmark study of six scFMs against well-established baselines under realistic conditions, encompassing two gene-level and four cell-level tasks. Pre-clinical batch integration and cell type annotation are evaluated across five datasets with diverse biological conditions, while clinically relevant tasks, such as cancer cell identification and drug sensitivity prediction, are assessed across seven cancer types and four drugs. Model performance is evaluated using 12 metrics spanning unsupervised, supervised, and knowledge-based approaches, including scGraph-OntoRWR, a novel metric designed to uncover intrinsic knowledge encoded by scFMs. We provide holistic rankings from dataset-specific to general performance to guide model selection. Our findings reveal that scFMs are robust and versatile tools for diverse applications while simpler machine learning models are more adept at efficiently adapting to specific datasets, particularly under resource constraints. Notably, no single scFM consistently outperforms others across all tasks, emphasizing the need for tailored model selection based on factors such as dataset size, task complexity, biological interpretability, and computational resources. This benchmark introduces novel evaluation perspectives, identifying the strengths and limitations of current scFMs, and paves the way for their effective application in biological and clinical research, including cell atlas construction, tumor microenvironment studies, and treatment decision-making.\",\"PeriodicalId\":12611,\"journal\":{\"name\":\"Genome Biology\",\"volume\":\"99 1\",\"pages\":\"\"},\"PeriodicalIF\":10.1000,\"publicationDate\":\"2025-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genome Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13059-025-03781-6\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13059-025-03781-6","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Biology-driven insights into the power of single-cell foundation models
Single-cell foundation models (scFMs) have emerged as powerful tools for integrating heterogeneous datasets and exploring biological systems. Despite high expectations, their ability to extract unique biological insights beyond standard methods and their advantages over traditional approaches in specific tasks remain unclear. Here, we present a comprehensive benchmark study of six scFMs against well-established baselines under realistic conditions, encompassing two gene-level and four cell-level tasks. Pre-clinical batch integration and cell type annotation are evaluated across five datasets with diverse biological conditions, while clinically relevant tasks, such as cancer cell identification and drug sensitivity prediction, are assessed across seven cancer types and four drugs. Model performance is evaluated using 12 metrics spanning unsupervised, supervised, and knowledge-based approaches, including scGraph-OntoRWR, a novel metric designed to uncover intrinsic knowledge encoded by scFMs. We provide holistic rankings from dataset-specific to general performance to guide model selection. Our findings reveal that scFMs are robust and versatile tools for diverse applications while simpler machine learning models are more adept at efficiently adapting to specific datasets, particularly under resource constraints. Notably, no single scFM consistently outperforms others across all tasks, emphasizing the need for tailored model selection based on factors such as dataset size, task complexity, biological interpretability, and computational resources. This benchmark introduces novel evaluation perspectives, identifying the strengths and limitations of current scFMs, and paves the way for their effective application in biological and clinical research, including cell atlas construction, tumor microenvironment studies, and treatment decision-making.
Genome BiologyBiochemistry, Genetics and Molecular Biology-Genetics
CiteScore
21.00
自引率
3.30%
发文量
241
审稿时长
2 months
期刊介绍:
Genome Biology stands as a premier platform for exceptional research across all domains of biology and biomedicine, explored through a genomic and post-genomic lens.
With an impressive impact factor of 12.3 (2022),* the journal secures its position as the 3rd-ranked research journal in the Genetics and Heredity category and the 2nd-ranked research journal in the Biotechnology and Applied Microbiology category by Thomson Reuters. Notably, Genome Biology holds the distinction of being the highest-ranked open-access journal in this category.
Our dedicated team of highly trained in-house Editors collaborates closely with our esteemed Editorial Board of international experts, ensuring the journal remains on the forefront of scientific advances and community standards. Regular engagement with researchers at conferences and institute visits underscores our commitment to staying abreast of the latest developments in the field.