易于加工的高性能液晶嵌段共聚物与中尺度相分离

IF 5.2 1区 化学 Q1 POLYMER SCIENCE
Haiyang Zhang, , , Xiao Lu, , , Chaofeng Chen, , , Wei Zhao, , , Qingbao Guan*, , and , Zhengwei You*, 
{"title":"易于加工的高性能液晶嵌段共聚物与中尺度相分离","authors":"Haiyang Zhang,&nbsp;, ,&nbsp;Xiao Lu,&nbsp;, ,&nbsp;Chaofeng Chen,&nbsp;, ,&nbsp;Wei Zhao,&nbsp;, ,&nbsp;Qingbao Guan*,&nbsp;, and ,&nbsp;Zhengwei You*,&nbsp;","doi":"10.1021/acs.macromol.5c01618","DOIUrl":null,"url":null,"abstract":"<p >Special engineering plastics have attracted significant attention in various fields. Liquid crystalline polyarylate (LCP), as a high-performance reinforcing material, shows great potential as a component of composites thanks to its fluidity and in situ enhancement effect. However, the incompatibility between LCP and other components leads to an inevitable optical-microscale (1–100 μm) phase separation, thus deteriorating the comprehensive properties of composites. To address this challenge, we prepared aromatic liquid crystalline block copoly(arylateketone)s through simple one-pot polycondensation. The fabricated block copolymer overcomes optical-microscale phase separation and exhibits unique mesoscale (1–100 nm) phase separation through selecting monomers with distinct reactivities. The poly(arylateketone) showed excellent thermal (glass transition temperatures ∼180 °C) and mechanical (flexural strengths ∼150 MPa) properties that are comparable to commercial special engineering plastics, while exhibiting facile processability (complex viscosities ∼4.97 × 10<sup>2</sup> Pa·s at 320 °C). This study provides a new way of modulating material properties and will inspire the development of advanced high-performance materials.</p>","PeriodicalId":51,"journal":{"name":"Macromolecules","volume":"58 19","pages":"10423–10432"},"PeriodicalIF":5.2000,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Readily Processable High Performance Liquid Crystalline Block Copolymer with Mesoscale Phase Separation\",\"authors\":\"Haiyang Zhang,&nbsp;, ,&nbsp;Xiao Lu,&nbsp;, ,&nbsp;Chaofeng Chen,&nbsp;, ,&nbsp;Wei Zhao,&nbsp;, ,&nbsp;Qingbao Guan*,&nbsp;, and ,&nbsp;Zhengwei You*,&nbsp;\",\"doi\":\"10.1021/acs.macromol.5c01618\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Special engineering plastics have attracted significant attention in various fields. Liquid crystalline polyarylate (LCP), as a high-performance reinforcing material, shows great potential as a component of composites thanks to its fluidity and in situ enhancement effect. However, the incompatibility between LCP and other components leads to an inevitable optical-microscale (1–100 μm) phase separation, thus deteriorating the comprehensive properties of composites. To address this challenge, we prepared aromatic liquid crystalline block copoly(arylateketone)s through simple one-pot polycondensation. The fabricated block copolymer overcomes optical-microscale phase separation and exhibits unique mesoscale (1–100 nm) phase separation through selecting monomers with distinct reactivities. The poly(arylateketone) showed excellent thermal (glass transition temperatures ∼180 °C) and mechanical (flexural strengths ∼150 MPa) properties that are comparable to commercial special engineering plastics, while exhibiting facile processability (complex viscosities ∼4.97 × 10<sup>2</sup> Pa·s at 320 °C). This study provides a new way of modulating material properties and will inspire the development of advanced high-performance materials.</p>\",\"PeriodicalId\":51,\"journal\":{\"name\":\"Macromolecules\",\"volume\":\"58 19\",\"pages\":\"10423–10432\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2025-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Macromolecules\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.macromol.5c01618\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.macromol.5c01618","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

特种工程塑料在各个领域引起了极大的关注。液晶聚芳酯(LCP)作为一种高性能增强材料,由于其流动性和原位增强作用,在复合材料中显示出巨大的潜力。然而,LCP与其他组分之间的不相容性导致不可避免的光学-微尺度(1-100 μm)相分离,从而使复合材料的综合性能恶化。为了解决这一挑战,我们通过简单的一锅缩聚法制备了芳族液晶嵌段共聚物(芳基甲酮)。制备的嵌段共聚物克服了光学-微尺度相分离,通过选择具有不同反应活性的单体,表现出独特的中尺度(1-100 nm)相分离。聚芳烯酮表现出优异的热(玻璃化温度~ 180℃)和机械(弯曲强度~ 150 MPa)性能,与商业特殊工程塑料相当,同时表现出易于加工的性能(320℃时的复合粘度~ 4.97 × 102 Pa·s)。该研究提供了一种调节材料性能的新方法,将启发先进高性能材料的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Readily Processable High Performance Liquid Crystalline Block Copolymer with Mesoscale Phase Separation

Readily Processable High Performance Liquid Crystalline Block Copolymer with Mesoscale Phase Separation

Readily Processable High Performance Liquid Crystalline Block Copolymer with Mesoscale Phase Separation

Special engineering plastics have attracted significant attention in various fields. Liquid crystalline polyarylate (LCP), as a high-performance reinforcing material, shows great potential as a component of composites thanks to its fluidity and in situ enhancement effect. However, the incompatibility between LCP and other components leads to an inevitable optical-microscale (1–100 μm) phase separation, thus deteriorating the comprehensive properties of composites. To address this challenge, we prepared aromatic liquid crystalline block copoly(arylateketone)s through simple one-pot polycondensation. The fabricated block copolymer overcomes optical-microscale phase separation and exhibits unique mesoscale (1–100 nm) phase separation through selecting monomers with distinct reactivities. The poly(arylateketone) showed excellent thermal (glass transition temperatures ∼180 °C) and mechanical (flexural strengths ∼150 MPa) properties that are comparable to commercial special engineering plastics, while exhibiting facile processability (complex viscosities ∼4.97 × 102 Pa·s at 320 °C). This study provides a new way of modulating material properties and will inspire the development of advanced high-performance materials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Macromolecules
Macromolecules 工程技术-高分子科学
CiteScore
9.30
自引率
16.40%
发文量
942
审稿时长
2 months
期刊介绍: Macromolecules publishes original, fundamental, and impactful research on all aspects of polymer science. Topics of interest include synthesis (e.g., controlled polymerizations, polymerization catalysis, post polymerization modification, new monomer structures and polymer architectures, and polymerization mechanisms/kinetics analysis); phase behavior, thermodynamics, dynamic, and ordering/disordering phenomena (e.g., self-assembly, gelation, crystallization, solution/melt/solid-state characteristics); structure and properties (e.g., mechanical and rheological properties, surface/interfacial characteristics, electronic and transport properties); new state of the art characterization (e.g., spectroscopy, scattering, microscopy, rheology), simulation (e.g., Monte Carlo, molecular dynamics, multi-scale/coarse-grained modeling), and theoretical methods. Renewable/sustainable polymers, polymer networks, responsive polymers, electro-, magneto- and opto-active macromolecules, inorganic polymers, charge-transporting polymers (ion-containing, semiconducting, and conducting), nanostructured polymers, and polymer composites are also of interest. Typical papers published in Macromolecules showcase important and innovative concepts, experimental methods/observations, and theoretical/computational approaches that demonstrate a fundamental advance in the understanding of polymers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信