自监督学习在时间序列异常检测中的研究进展与挑战

IF 28 1区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS
Aitor Sánchez-Ferrera, Borja Calvo, Jose A. Lozano
{"title":"自监督学习在时间序列异常检测中的研究进展与挑战","authors":"Aitor Sánchez-Ferrera, Borja Calvo, Jose A. Lozano","doi":"10.1145/3770575","DOIUrl":null,"url":null,"abstract":"Time series anomaly detection presents various challenges due to the sequential and dynamic nature of time-dependent data. Traditional unsupervised methods frequently encounter difficulties in generalization, often overfitting to known normal patterns observed during training and struggling to adapt to unseen normality. In response to this limitation, self-supervised techniques for time series have garnered attention as a potential solution to undertake this obstacle and enhance the performance of anomaly detectors. This paper presents a comprehensive review of the recent methods that make use of self-supervised learning for time series anomaly detection. A taxonomy is proposed to categorize these methods based on their primary characteristics, facilitating a clear understanding of their diversity within this field. The information contained in this survey, along with additional details that will be periodically updated, is available on the following GitHub repository: https://github.com/Aitorzan3/Awesome-Self-Supervised-Time-Series-Anomaly-Detection.","PeriodicalId":50926,"journal":{"name":"ACM Computing Surveys","volume":"152 1","pages":""},"PeriodicalIF":28.0000,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Review on Self-Supervised Learning in Time Series Anomaly Detection: Recent Advances and Open Challenges\",\"authors\":\"Aitor Sánchez-Ferrera, Borja Calvo, Jose A. Lozano\",\"doi\":\"10.1145/3770575\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Time series anomaly detection presents various challenges due to the sequential and dynamic nature of time-dependent data. Traditional unsupervised methods frequently encounter difficulties in generalization, often overfitting to known normal patterns observed during training and struggling to adapt to unseen normality. In response to this limitation, self-supervised techniques for time series have garnered attention as a potential solution to undertake this obstacle and enhance the performance of anomaly detectors. This paper presents a comprehensive review of the recent methods that make use of self-supervised learning for time series anomaly detection. A taxonomy is proposed to categorize these methods based on their primary characteristics, facilitating a clear understanding of their diversity within this field. The information contained in this survey, along with additional details that will be periodically updated, is available on the following GitHub repository: https://github.com/Aitorzan3/Awesome-Self-Supervised-Time-Series-Anomaly-Detection.\",\"PeriodicalId\":50926,\"journal\":{\"name\":\"ACM Computing Surveys\",\"volume\":\"152 1\",\"pages\":\"\"},\"PeriodicalIF\":28.0000,\"publicationDate\":\"2025-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Computing Surveys\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3770575\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Computing Surveys","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3770575","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

由于时间相关数据的时序性和动态性,时间序列异常检测提出了各种挑战。传统的无监督方法在泛化过程中经常遇到困难,经常过度拟合训练中观察到的已知正常模式,并且难以适应未见的正常模式。针对这一限制,时间序列的自监督技术作为克服这一障碍和提高异常检测器性能的潜在解决方案已经引起了人们的关注。本文对近年来利用自监督学习进行时间序列异常检测的方法进行了综述。根据这些方法的主要特征,提出了一种分类法来对这些方法进行分类,以便清楚地了解它们在该领域的多样性。此调查中包含的信息以及将定期更新的其他详细信息可在以下GitHub存储库中获得:https://github.com/Aitorzan3/Awesome-Self-Supervised-Time-Series-Anomaly-Detection。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Review on Self-Supervised Learning in Time Series Anomaly Detection: Recent Advances and Open Challenges
Time series anomaly detection presents various challenges due to the sequential and dynamic nature of time-dependent data. Traditional unsupervised methods frequently encounter difficulties in generalization, often overfitting to known normal patterns observed during training and struggling to adapt to unseen normality. In response to this limitation, self-supervised techniques for time series have garnered attention as a potential solution to undertake this obstacle and enhance the performance of anomaly detectors. This paper presents a comprehensive review of the recent methods that make use of self-supervised learning for time series anomaly detection. A taxonomy is proposed to categorize these methods based on their primary characteristics, facilitating a clear understanding of their diversity within this field. The information contained in this survey, along with additional details that will be periodically updated, is available on the following GitHub repository: https://github.com/Aitorzan3/Awesome-Self-Supervised-Time-Series-Anomaly-Detection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACM Computing Surveys
ACM Computing Surveys 工程技术-计算机:理论方法
CiteScore
33.20
自引率
0.60%
发文量
372
审稿时长
12 months
期刊介绍: ACM Computing Surveys is an academic journal that focuses on publishing surveys and tutorials on various areas of computing research and practice. The journal aims to provide comprehensive and easily understandable articles that guide readers through the literature and help them understand topics outside their specialties. In terms of impact, CSUR has a high reputation with a 2022 Impact Factor of 16.6. It is ranked 3rd out of 111 journals in the field of Computer Science Theory & Methods. ACM Computing Surveys is indexed and abstracted in various services, including AI2 Semantic Scholar, Baidu, Clarivate/ISI: JCR, CNKI, DeepDyve, DTU, EBSCO: EDS/HOST, and IET Inspec, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信