单晶有机半导体微结构的毛细管凝聚非均相集成。

IF 15.6 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Fengmian Li,Junchuan Yang,Yuyan Zhao,Ke He,Xiao Wei,Jiangang Feng,Hanfei Gao,Jing Li,Ning Guo,Tianchen Li,Tenglong Li,Yifei Cheng,Zhenglian Qin,Yuchen Qiu,Zhiyuan He,Lei Jiang,Yuchen Wu
{"title":"单晶有机半导体微结构的毛细管凝聚非均相集成。","authors":"Fengmian Li,Junchuan Yang,Yuyan Zhao,Ke He,Xiao Wei,Jiangang Feng,Hanfei Gao,Jing Li,Ning Guo,Tianchen Li,Tenglong Li,Yifei Cheng,Zhenglian Qin,Yuchen Qiu,Zhiyuan He,Lei Jiang,Yuchen Wu","doi":"10.1021/jacs.5c12461","DOIUrl":null,"url":null,"abstract":"Single-crystalline organic emissive semiconductors, featuring high photoluminescence quantum efficiency, intrinsic optical microcavities, and high charge carrier mobility, hold great promise for integrated photonics applications. However, realizing practical integrated photonics requires the deterministic patterning of multicomponent single-crystalline organic semiconductors with high resolution and unidirectional crystallographic orientation, which remains an ongoing challenge. Here, we report a nanoconfined recrystallization strategy that enables the integrated patterning of multicomponent, single-crystalline organic microstructures. By precisely regulating site-specific capillary condensation within top-pillar-confined spaces, we achieve selective rewetting of printed polycrystalline semiconductors, leading to the formation of discrete multicomponent nanoconfined liquid bridges without cross-contamination. Controlled nucleation and directional growth under regulated evaporation conditions yielded well-defined single-crystalline microstructures with a uniform size and pure crystallographic orientation. These multicomponent heterogeneous microstructures achieve a minimum feature size and interfeature spacing of 2 μm, representing a significant advancement over conventional patterning methods. These high crystalline structures demonstrate excellent optical microcavity characteristics, achieving an ultralow lasing threshold of 0.49 μJ cm-2 and quality factor (Q) as high as 1.1 × 104. Leveraging this platform, we fabricated 2 in. full-color organic single-crystalline microlaser arrays with pixel densities exceeding 2000 PPI (pixels per inch) and a color gamut coverage of 104% of the Rec. 2020.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"23 1","pages":""},"PeriodicalIF":15.6000,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Heterogeneous Integration of Single-Crystalline Organic Semiconductor Microstructures via Capillary Condensation.\",\"authors\":\"Fengmian Li,Junchuan Yang,Yuyan Zhao,Ke He,Xiao Wei,Jiangang Feng,Hanfei Gao,Jing Li,Ning Guo,Tianchen Li,Tenglong Li,Yifei Cheng,Zhenglian Qin,Yuchen Qiu,Zhiyuan He,Lei Jiang,Yuchen Wu\",\"doi\":\"10.1021/jacs.5c12461\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Single-crystalline organic emissive semiconductors, featuring high photoluminescence quantum efficiency, intrinsic optical microcavities, and high charge carrier mobility, hold great promise for integrated photonics applications. However, realizing practical integrated photonics requires the deterministic patterning of multicomponent single-crystalline organic semiconductors with high resolution and unidirectional crystallographic orientation, which remains an ongoing challenge. Here, we report a nanoconfined recrystallization strategy that enables the integrated patterning of multicomponent, single-crystalline organic microstructures. By precisely regulating site-specific capillary condensation within top-pillar-confined spaces, we achieve selective rewetting of printed polycrystalline semiconductors, leading to the formation of discrete multicomponent nanoconfined liquid bridges without cross-contamination. Controlled nucleation and directional growth under regulated evaporation conditions yielded well-defined single-crystalline microstructures with a uniform size and pure crystallographic orientation. These multicomponent heterogeneous microstructures achieve a minimum feature size and interfeature spacing of 2 μm, representing a significant advancement over conventional patterning methods. These high crystalline structures demonstrate excellent optical microcavity characteristics, achieving an ultralow lasing threshold of 0.49 μJ cm-2 and quality factor (Q) as high as 1.1 × 104. Leveraging this platform, we fabricated 2 in. full-color organic single-crystalline microlaser arrays with pixel densities exceeding 2000 PPI (pixels per inch) and a color gamut coverage of 104% of the Rec. 2020.\",\"PeriodicalId\":49,\"journal\":{\"name\":\"Journal of the American Chemical Society\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":15.6000,\"publicationDate\":\"2025-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Chemical Society\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/jacs.5c12461\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.5c12461","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

单晶有机发射半导体具有高光致发光量子效率、固有光学微腔和高载流子迁移率等特点,在集成光子学领域具有广阔的应用前景。然而,实现实际集成光子学需要具有高分辨率和单向晶体取向的多组分单晶有机半导体的确定性图像化,这仍然是一个持续的挑战。在这里,我们报告了一种纳米限制的再结晶策略,可以实现多组分单晶有机微观结构的集成图像化。通过精确调节顶柱密闭空间中特定位置的毛细管冷凝,我们实现了印刷多晶半导体的选择性再润湿,从而形成离散的多组分纳米密闭液体桥,而不会交叉污染。在调节的蒸发条件下,控制成核和定向生长产生了具有均匀尺寸和纯晶体取向的明确的单晶微观结构。这些多组分非均质微结构实现了最小特征尺寸和2 μm的特征间距,代表了传统模式方法的重大进步。这些高晶体结构具有优异的光学微腔特性,实现了0.49 μJ cm-2的超低激光阈值,品质因子(Q)高达1.1 × 104。利用这个平台,我们制造了2英寸。全彩有机单晶微激光阵列,像素密度超过2000 PPI(每英寸像素),色域覆盖率达到Rec. 2020的104%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Heterogeneous Integration of Single-Crystalline Organic Semiconductor Microstructures via Capillary Condensation.
Single-crystalline organic emissive semiconductors, featuring high photoluminescence quantum efficiency, intrinsic optical microcavities, and high charge carrier mobility, hold great promise for integrated photonics applications. However, realizing practical integrated photonics requires the deterministic patterning of multicomponent single-crystalline organic semiconductors with high resolution and unidirectional crystallographic orientation, which remains an ongoing challenge. Here, we report a nanoconfined recrystallization strategy that enables the integrated patterning of multicomponent, single-crystalline organic microstructures. By precisely regulating site-specific capillary condensation within top-pillar-confined spaces, we achieve selective rewetting of printed polycrystalline semiconductors, leading to the formation of discrete multicomponent nanoconfined liquid bridges without cross-contamination. Controlled nucleation and directional growth under regulated evaporation conditions yielded well-defined single-crystalline microstructures with a uniform size and pure crystallographic orientation. These multicomponent heterogeneous microstructures achieve a minimum feature size and interfeature spacing of 2 μm, representing a significant advancement over conventional patterning methods. These high crystalline structures demonstrate excellent optical microcavity characteristics, achieving an ultralow lasing threshold of 0.49 μJ cm-2 and quality factor (Q) as high as 1.1 × 104. Leveraging this platform, we fabricated 2 in. full-color organic single-crystalline microlaser arrays with pixel densities exceeding 2000 PPI (pixels per inch) and a color gamut coverage of 104% of the Rec. 2020.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信