María Santos,Yusuf B Johari,Laura Biggins,Natalie C Elliott,Stefan Schoenfelder,Mounika Boddireddy,Daniel K Fabian,Michael Anbar,Peter M O'Callaghan,Peter J Rugg-Gunn
{"title":"中国仓鼠卵巢细胞功能增强因子的全面定位。","authors":"María Santos,Yusuf B Johari,Laura Biggins,Natalie C Elliott,Stefan Schoenfelder,Mounika Boddireddy,Daniel K Fabian,Michael Anbar,Peter M O'Callaghan,Peter J Rugg-Gunn","doi":"10.1002/bit.70076","DOIUrl":null,"url":null,"abstract":"Chinese hamster ovary (CHO) cells are the leading mammalian system for recombinant therapeutic protein production. However, optimizing transgene expression remains challenging due to the limited understanding of the regulatory mechanisms controlling gene expression in CHO cells. Towards overcoming this barrier, here we provide a systematic characterization of cis-regulatory elements in CHO cells. Using genome-wide STARR-seq, a high-throughput method for quantifying enhancer strength, we identified regions with enhancer activity in the CHO cell genome. By integrating these data with ATAC-seq and histone modification profiles, we were able to characterize the chromatin state of these regions. Our analysis revealed thousands of newly identified enhancer sequences. The most active sequences could drive transgene expression at levels similar to or higher than strong viral enhancers. Notably, half of the regions found to have enhancer activity were within inaccessible chromatin in their native context. We observed that accessible enhancers were primarily near to transcriptional start sites and associated with ubiquitously-expressed genes, whereas inaccessible enhancers were predominantly intergenic and associated with tissue-specific genes. Additionally, through a deep-learning-based approach ETS and YY1 transcription factor (TF) binding motifs were identified as key determinants of enhancer identity and strength. Disrupting YY1 binding motifs led to reduced enhancer activity, thereby highlighting the importance of YY1 as a transcriptional activator in CHO cells. Our study demonstrates the first comprehensive map of functionally-validated enhancers in CHO cells and generates new insights into gene regulation and the role of TFs in determining enhancer strength. This study helps to lay the foundation for strategic engineering of CHO cell transcriptional networks to achieve enhanced biopharmaceutical production.","PeriodicalId":9168,"journal":{"name":"Biotechnology and Bioengineering","volume":"131 1 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comprehensive Mapping of Functional Enhancers in Chinese Hamster Ovary Cells.\",\"authors\":\"María Santos,Yusuf B Johari,Laura Biggins,Natalie C Elliott,Stefan Schoenfelder,Mounika Boddireddy,Daniel K Fabian,Michael Anbar,Peter M O'Callaghan,Peter J Rugg-Gunn\",\"doi\":\"10.1002/bit.70076\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Chinese hamster ovary (CHO) cells are the leading mammalian system for recombinant therapeutic protein production. However, optimizing transgene expression remains challenging due to the limited understanding of the regulatory mechanisms controlling gene expression in CHO cells. Towards overcoming this barrier, here we provide a systematic characterization of cis-regulatory elements in CHO cells. Using genome-wide STARR-seq, a high-throughput method for quantifying enhancer strength, we identified regions with enhancer activity in the CHO cell genome. By integrating these data with ATAC-seq and histone modification profiles, we were able to characterize the chromatin state of these regions. Our analysis revealed thousands of newly identified enhancer sequences. The most active sequences could drive transgene expression at levels similar to or higher than strong viral enhancers. Notably, half of the regions found to have enhancer activity were within inaccessible chromatin in their native context. We observed that accessible enhancers were primarily near to transcriptional start sites and associated with ubiquitously-expressed genes, whereas inaccessible enhancers were predominantly intergenic and associated with tissue-specific genes. Additionally, through a deep-learning-based approach ETS and YY1 transcription factor (TF) binding motifs were identified as key determinants of enhancer identity and strength. Disrupting YY1 binding motifs led to reduced enhancer activity, thereby highlighting the importance of YY1 as a transcriptional activator in CHO cells. Our study demonstrates the first comprehensive map of functionally-validated enhancers in CHO cells and generates new insights into gene regulation and the role of TFs in determining enhancer strength. This study helps to lay the foundation for strategic engineering of CHO cell transcriptional networks to achieve enhanced biopharmaceutical production.\",\"PeriodicalId\":9168,\"journal\":{\"name\":\"Biotechnology and Bioengineering\",\"volume\":\"131 1 1\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotechnology and Bioengineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/bit.70076\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology and Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/bit.70076","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Comprehensive Mapping of Functional Enhancers in Chinese Hamster Ovary Cells.
Chinese hamster ovary (CHO) cells are the leading mammalian system for recombinant therapeutic protein production. However, optimizing transgene expression remains challenging due to the limited understanding of the regulatory mechanisms controlling gene expression in CHO cells. Towards overcoming this barrier, here we provide a systematic characterization of cis-regulatory elements in CHO cells. Using genome-wide STARR-seq, a high-throughput method for quantifying enhancer strength, we identified regions with enhancer activity in the CHO cell genome. By integrating these data with ATAC-seq and histone modification profiles, we were able to characterize the chromatin state of these regions. Our analysis revealed thousands of newly identified enhancer sequences. The most active sequences could drive transgene expression at levels similar to or higher than strong viral enhancers. Notably, half of the regions found to have enhancer activity were within inaccessible chromatin in their native context. We observed that accessible enhancers were primarily near to transcriptional start sites and associated with ubiquitously-expressed genes, whereas inaccessible enhancers were predominantly intergenic and associated with tissue-specific genes. Additionally, through a deep-learning-based approach ETS and YY1 transcription factor (TF) binding motifs were identified as key determinants of enhancer identity and strength. Disrupting YY1 binding motifs led to reduced enhancer activity, thereby highlighting the importance of YY1 as a transcriptional activator in CHO cells. Our study demonstrates the first comprehensive map of functionally-validated enhancers in CHO cells and generates new insights into gene regulation and the role of TFs in determining enhancer strength. This study helps to lay the foundation for strategic engineering of CHO cell transcriptional networks to achieve enhanced biopharmaceutical production.
期刊介绍:
Biotechnology & Bioengineering publishes Perspectives, Articles, Reviews, Mini-Reviews, and Communications to the Editor that embrace all aspects of biotechnology. These include:
-Enzyme systems and their applications, including enzyme reactors, purification, and applied aspects of protein engineering
-Animal-cell biotechnology, including media development
-Applied aspects of cellular physiology, metabolism, and energetics
-Biocatalysis and applied enzymology, including enzyme reactors, protein engineering, and nanobiotechnology
-Biothermodynamics
-Biofuels, including biomass and renewable resource engineering
-Biomaterials, including delivery systems and materials for tissue engineering
-Bioprocess engineering, including kinetics and modeling of biological systems, transport phenomena in bioreactors, bioreactor design, monitoring, and control
-Biosensors and instrumentation
-Computational and systems biology, including bioinformatics and genomic/proteomic studies
-Environmental biotechnology, including biofilms, algal systems, and bioremediation
-Metabolic and cellular engineering
-Plant-cell biotechnology
-Spectroscopic and other analytical techniques for biotechnological applications
-Synthetic biology
-Tissue engineering, stem-cell bioengineering, regenerative medicine, gene therapy and delivery systems
The editors will consider papers for publication based on novelty, their immediate or future impact on biotechnological processes, and their contribution to the advancement of biochemical engineering science. Submission of papers dealing with routine aspects of bioprocessing, description of established equipment, and routine applications of established methodologies (e.g., control strategies, modeling, experimental methods) is discouraged. Theoretical papers will be judged based on the novelty of the approach and their potential impact, or on their novel capability to predict and elucidate experimental observations.