{"title":"用于自动椎体分析的深度学习:最近进展的方法学调查。","authors":"Zhuofan Xie, Zishan Lin, Enlong Sun, Fengyi Ding, Jie Qi, Shen Zhao","doi":"10.1016/j.compmedimag.2025.102652","DOIUrl":null,"url":null,"abstract":"<p><p>Automated vertebra analysis (AVA), encompassing vertebra detection and segmentation, plays a critical role in computer-aided diagnosis, surgical planning, and postoperative evaluation in spine-related clinical workflows. Despite notable progress, AVA continues to face key challenges, including variations in the field of view (FOV), complex vertebral morphology, limited availability of high-quality annotated data, and performance degradation under domain shifts. Over the past decade, numerous studies have employed deep learning (DL) to tackle these issues, introducing advanced network architectures and innovative learning paradigms. However, the rapid evolution of these methods has not been comprehensively captured by existing surveys, resulting in a knowledge gap regarding the current state of the field. To address this, this paper presents an up-to-date review that systematically summarizes recent advances. The review begins by consolidating publicly available datasets and evaluation metrics to support standardized benchmarking. Recent DL-based AVA approaches are then analyzed from two methodological perspectives: network architecture improvement and learning strategies design. Finally, an examination of persistent technical barriers and emerging clinical needs that are shaping future research directions is provided. These include multimodal learning, domain generalization, and the integration of foundation models. As the most current survey in the field, this review provides a comprehensive and structured synthesis aimed at guiding future research toward the development of robust, generalizable, and clinically deployable AVA systems in the era of intelligent medical imaging.</p>","PeriodicalId":50631,"journal":{"name":"Computerized Medical Imaging and Graphics","volume":"125 ","pages":"102652"},"PeriodicalIF":4.9000,"publicationDate":"2025-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep learning for automatic vertebra analysis: A methodological survey of recent advances.\",\"authors\":\"Zhuofan Xie, Zishan Lin, Enlong Sun, Fengyi Ding, Jie Qi, Shen Zhao\",\"doi\":\"10.1016/j.compmedimag.2025.102652\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Automated vertebra analysis (AVA), encompassing vertebra detection and segmentation, plays a critical role in computer-aided diagnosis, surgical planning, and postoperative evaluation in spine-related clinical workflows. Despite notable progress, AVA continues to face key challenges, including variations in the field of view (FOV), complex vertebral morphology, limited availability of high-quality annotated data, and performance degradation under domain shifts. Over the past decade, numerous studies have employed deep learning (DL) to tackle these issues, introducing advanced network architectures and innovative learning paradigms. However, the rapid evolution of these methods has not been comprehensively captured by existing surveys, resulting in a knowledge gap regarding the current state of the field. To address this, this paper presents an up-to-date review that systematically summarizes recent advances. The review begins by consolidating publicly available datasets and evaluation metrics to support standardized benchmarking. Recent DL-based AVA approaches are then analyzed from two methodological perspectives: network architecture improvement and learning strategies design. Finally, an examination of persistent technical barriers and emerging clinical needs that are shaping future research directions is provided. These include multimodal learning, domain generalization, and the integration of foundation models. As the most current survey in the field, this review provides a comprehensive and structured synthesis aimed at guiding future research toward the development of robust, generalizable, and clinically deployable AVA systems in the era of intelligent medical imaging.</p>\",\"PeriodicalId\":50631,\"journal\":{\"name\":\"Computerized Medical Imaging and Graphics\",\"volume\":\"125 \",\"pages\":\"102652\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computerized Medical Imaging and Graphics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.compmedimag.2025.102652\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computerized Medical Imaging and Graphics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.compmedimag.2025.102652","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Deep learning for automatic vertebra analysis: A methodological survey of recent advances.
Automated vertebra analysis (AVA), encompassing vertebra detection and segmentation, plays a critical role in computer-aided diagnosis, surgical planning, and postoperative evaluation in spine-related clinical workflows. Despite notable progress, AVA continues to face key challenges, including variations in the field of view (FOV), complex vertebral morphology, limited availability of high-quality annotated data, and performance degradation under domain shifts. Over the past decade, numerous studies have employed deep learning (DL) to tackle these issues, introducing advanced network architectures and innovative learning paradigms. However, the rapid evolution of these methods has not been comprehensively captured by existing surveys, resulting in a knowledge gap regarding the current state of the field. To address this, this paper presents an up-to-date review that systematically summarizes recent advances. The review begins by consolidating publicly available datasets and evaluation metrics to support standardized benchmarking. Recent DL-based AVA approaches are then analyzed from two methodological perspectives: network architecture improvement and learning strategies design. Finally, an examination of persistent technical barriers and emerging clinical needs that are shaping future research directions is provided. These include multimodal learning, domain generalization, and the integration of foundation models. As the most current survey in the field, this review provides a comprehensive and structured synthesis aimed at guiding future research toward the development of robust, generalizable, and clinically deployable AVA systems in the era of intelligent medical imaging.
期刊介绍:
The purpose of the journal Computerized Medical Imaging and Graphics is to act as a source for the exchange of research results concerning algorithmic advances, development, and application of digital imaging in disease detection, diagnosis, intervention, prevention, precision medicine, and population health. Included in the journal will be articles on novel computerized imaging or visualization techniques, including artificial intelligence and machine learning, augmented reality for surgical planning and guidance, big biomedical data visualization, computer-aided diagnosis, computerized-robotic surgery, image-guided therapy, imaging scanning and reconstruction, mobile and tele-imaging, radiomics, and imaging integration and modeling with other information relevant to digital health. The types of biomedical imaging include: magnetic resonance, computed tomography, ultrasound, nuclear medicine, X-ray, microwave, optical and multi-photon microscopy, video and sensory imaging, and the convergence of biomedical images with other non-imaging datasets.