基于通路反应基因组的化疗耐药药物发现及其在乳腺癌中的应用。

IF 3.9 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Frontiers in bioinformatics Pub Date : 2025-09-16 eCollection Date: 2025-01-01 DOI:10.3389/fbinf.2025.1661601
Dehua Feng, Jingwen Hao, Lingxu Li, Jian Chen, Xinying Liu, Ruijie Zhang, Huirui Han, Tianyi Li, Xuefeng Wang, Xia Li, Lei Yu, Bing Li, Jin Li, Limei Wang
{"title":"基于通路反应基因组的化疗耐药药物发现及其在乳腺癌中的应用。","authors":"Dehua Feng, Jingwen Hao, Lingxu Li, Jian Chen, Xinying Liu, Ruijie Zhang, Huirui Han, Tianyi Li, Xuefeng Wang, Xia Li, Lei Yu, Bing Li, Jin Li, Limei Wang","doi":"10.3389/fbinf.2025.1661601","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Chemotherapy response variability in cancer patients necessitates novel strategies targeting chemoresistant populations. While combinatorial regimens show promise through synergistic pharmacological interactions, traditional pathway enrichment methods relying on static gene sets fail to capture drug-induced dynamic transcriptional perturbations.</p><p><strong>Methods: </strong>To address this challenge, we developed the Pathway-Responsive Gene Sets (PRGS) framework to systematically identify chemoresistance-associated pathways and guide therapeutic intervention. Comparative evaluation of three computational strategies (GSEA-like method, Hypergeometric test-based method, Bates test-based method) revealed that the GSEA-like methodology exhibited superior performance, enabling precise identification of drug-induced pathway dysregulation.</p><p><strong>Results: </strong>Key experimental findings demonstrated PRGS's superiority over conventional Pathway Member Gene Sets (PMGS), exhibiting statistical independence (<i>p</i> < 0.0001) and enhanced detection of chemotherapy-driven pathway dysregulation. Application of PRGS to the GDSC dataset identified 8 resistance-associated pathways. Screening of agents targeting these pathways yielded candidates with predicted anti-resistance activity. An <i>in vitro</i> cellular experiment demonstrated that the bortezomib-bleomycin combination exhibited synergistic cytotoxicity (IDAcomboScore = 0.014) in T47D cells, highlighting the potential of PRGS-guided therapeutic strategies.</p><p><strong>Discussion: </strong>This study establishes a PRGS-based methodological framework that integrates genomic perturbations with precision oncology, demonstrating its capacity to decode resistance mechanisms and guide therapeutic development through dynamic pathway analysis.</p>","PeriodicalId":73066,"journal":{"name":"Frontiers in bioinformatics","volume":"5 ","pages":"1661601"},"PeriodicalIF":3.9000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12479470/pdf/","citationCount":"0","resultStr":"{\"title\":\"Drug discovery for chemotherapeutic resistance based on pathway-responsive gene sets and its application in breast cancer.\",\"authors\":\"Dehua Feng, Jingwen Hao, Lingxu Li, Jian Chen, Xinying Liu, Ruijie Zhang, Huirui Han, Tianyi Li, Xuefeng Wang, Xia Li, Lei Yu, Bing Li, Jin Li, Limei Wang\",\"doi\":\"10.3389/fbinf.2025.1661601\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Chemotherapy response variability in cancer patients necessitates novel strategies targeting chemoresistant populations. While combinatorial regimens show promise through synergistic pharmacological interactions, traditional pathway enrichment methods relying on static gene sets fail to capture drug-induced dynamic transcriptional perturbations.</p><p><strong>Methods: </strong>To address this challenge, we developed the Pathway-Responsive Gene Sets (PRGS) framework to systematically identify chemoresistance-associated pathways and guide therapeutic intervention. Comparative evaluation of three computational strategies (GSEA-like method, Hypergeometric test-based method, Bates test-based method) revealed that the GSEA-like methodology exhibited superior performance, enabling precise identification of drug-induced pathway dysregulation.</p><p><strong>Results: </strong>Key experimental findings demonstrated PRGS's superiority over conventional Pathway Member Gene Sets (PMGS), exhibiting statistical independence (<i>p</i> < 0.0001) and enhanced detection of chemotherapy-driven pathway dysregulation. Application of PRGS to the GDSC dataset identified 8 resistance-associated pathways. Screening of agents targeting these pathways yielded candidates with predicted anti-resistance activity. An <i>in vitro</i> cellular experiment demonstrated that the bortezomib-bleomycin combination exhibited synergistic cytotoxicity (IDAcomboScore = 0.014) in T47D cells, highlighting the potential of PRGS-guided therapeutic strategies.</p><p><strong>Discussion: </strong>This study establishes a PRGS-based methodological framework that integrates genomic perturbations with precision oncology, demonstrating its capacity to decode resistance mechanisms and guide therapeutic development through dynamic pathway analysis.</p>\",\"PeriodicalId\":73066,\"journal\":{\"name\":\"Frontiers in bioinformatics\",\"volume\":\"5 \",\"pages\":\"1661601\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12479470/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in bioinformatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/fbinf.2025.1661601\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fbinf.2025.1661601","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

导读:癌症患者化疗反应的变异性需要针对化疗耐药人群的新策略。虽然组合方案通过协同药理相互作用显示出希望,但依赖静态基因集的传统途径富集方法无法捕获药物诱导的动态转录扰动。方法:为了应对这一挑战,我们开发了通路反应基因集(PRGS)框架,以系统地识别化学耐药相关通路并指导治疗干预。对三种计算策略(GSEA-like方法、Hypergeometric test-based方法、Bates test-based方法)的比较评价表明,GSEA-like方法表现出优越的性能,能够精确识别药物诱导的通路失调。结果:关键实验结果表明,PRGS优于传统的Pathway Member Gene Sets (PMGS),具有统计学独立性(p < 0.0001),并且增强了对化疗驱动的通路失调的检测。将PRGS应用于GDSC数据集,确定了8种与抗性相关的途径。筛选靶向这些途径的药物产生了具有预测抗抗性活性的候选药物。体外细胞实验表明,硼替佐米-博来霉素联合用药对T47D细胞具有协同细胞毒性(IDAcomboScore = 0.014),这凸显了prgs引导的治疗策略的潜力。讨论:本研究建立了一个基于prgs的方法框架,将基因组扰动与精确肿瘤学相结合,展示了其解码耐药机制的能力,并通过动态途径分析指导治疗开发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Drug discovery for chemotherapeutic resistance based on pathway-responsive gene sets and its application in breast cancer.

Introduction: Chemotherapy response variability in cancer patients necessitates novel strategies targeting chemoresistant populations. While combinatorial regimens show promise through synergistic pharmacological interactions, traditional pathway enrichment methods relying on static gene sets fail to capture drug-induced dynamic transcriptional perturbations.

Methods: To address this challenge, we developed the Pathway-Responsive Gene Sets (PRGS) framework to systematically identify chemoresistance-associated pathways and guide therapeutic intervention. Comparative evaluation of three computational strategies (GSEA-like method, Hypergeometric test-based method, Bates test-based method) revealed that the GSEA-like methodology exhibited superior performance, enabling precise identification of drug-induced pathway dysregulation.

Results: Key experimental findings demonstrated PRGS's superiority over conventional Pathway Member Gene Sets (PMGS), exhibiting statistical independence (p < 0.0001) and enhanced detection of chemotherapy-driven pathway dysregulation. Application of PRGS to the GDSC dataset identified 8 resistance-associated pathways. Screening of agents targeting these pathways yielded candidates with predicted anti-resistance activity. An in vitro cellular experiment demonstrated that the bortezomib-bleomycin combination exhibited synergistic cytotoxicity (IDAcomboScore = 0.014) in T47D cells, highlighting the potential of PRGS-guided therapeutic strategies.

Discussion: This study establishes a PRGS-based methodological framework that integrates genomic perturbations with precision oncology, demonstrating its capacity to decode resistance mechanisms and guide therapeutic development through dynamic pathway analysis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信