{"title":"肿瘤治疗场(TTFields)的选择性抗肿瘤活性,涉及肿瘤细胞和肿瘤微环境中的分子因子。","authors":"Ilaria Fuso Nerini , Rosy Amodeo , Maurizio D’Incalci , Monica Lupi","doi":"10.1016/j.tranon.2025.102556","DOIUrl":null,"url":null,"abstract":"<div><div>The local application of low-intensity electric fields at intermediate frequencies (Tumor Treating Fields – TTFields) has emerged as an effective anticancer treatment in conjunction with chemotherapy and immunotherapy for several solid tumors. Despite this progress, the phenotypic and genetic determinants underlying tumor sensitivity to TTFields remain largely unexplored, representing a critical gap in our understanding.</div><div>This review provides a comprehensive analysis of preclinical and translational studies describing the cellular factors that influence the anticancer properties of TTFields. An overview of recent omics studies on the complex cellular and molecular processes initiated by TTFields has revealed important mechanisms of action that warrant further investigation for their therapeutic potential.</div><div>The goal is to identify effects that can be leveraged to develop rational, synergistic co-treatments with anticancer agents that have complementary modes of action. In particular, the ability of TTFields to modulate the tumor microenvironment and reverse the local and systemic immunosuppression could represent a promising strategy to enhance the efficacy of immunotherapy across different tumor types.</div></div>","PeriodicalId":48975,"journal":{"name":"Translational Oncology","volume":"62 ","pages":"Article 102556"},"PeriodicalIF":5.0000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Selective antitumor activity of Tumor Treating Fields (TTFields) involving molecular factors in cancer cells and tumor microenvironment\",\"authors\":\"Ilaria Fuso Nerini , Rosy Amodeo , Maurizio D’Incalci , Monica Lupi\",\"doi\":\"10.1016/j.tranon.2025.102556\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The local application of low-intensity electric fields at intermediate frequencies (Tumor Treating Fields – TTFields) has emerged as an effective anticancer treatment in conjunction with chemotherapy and immunotherapy for several solid tumors. Despite this progress, the phenotypic and genetic determinants underlying tumor sensitivity to TTFields remain largely unexplored, representing a critical gap in our understanding.</div><div>This review provides a comprehensive analysis of preclinical and translational studies describing the cellular factors that influence the anticancer properties of TTFields. An overview of recent omics studies on the complex cellular and molecular processes initiated by TTFields has revealed important mechanisms of action that warrant further investigation for their therapeutic potential.</div><div>The goal is to identify effects that can be leveraged to develop rational, synergistic co-treatments with anticancer agents that have complementary modes of action. In particular, the ability of TTFields to modulate the tumor microenvironment and reverse the local and systemic immunosuppression could represent a promising strategy to enhance the efficacy of immunotherapy across different tumor types.</div></div>\",\"PeriodicalId\":48975,\"journal\":{\"name\":\"Translational Oncology\",\"volume\":\"62 \",\"pages\":\"Article 102556\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Translational Oncology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1936523325002876\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Translational Oncology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1936523325002876","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
Selective antitumor activity of Tumor Treating Fields (TTFields) involving molecular factors in cancer cells and tumor microenvironment
The local application of low-intensity electric fields at intermediate frequencies (Tumor Treating Fields – TTFields) has emerged as an effective anticancer treatment in conjunction with chemotherapy and immunotherapy for several solid tumors. Despite this progress, the phenotypic and genetic determinants underlying tumor sensitivity to TTFields remain largely unexplored, representing a critical gap in our understanding.
This review provides a comprehensive analysis of preclinical and translational studies describing the cellular factors that influence the anticancer properties of TTFields. An overview of recent omics studies on the complex cellular and molecular processes initiated by TTFields has revealed important mechanisms of action that warrant further investigation for their therapeutic potential.
The goal is to identify effects that can be leveraged to develop rational, synergistic co-treatments with anticancer agents that have complementary modes of action. In particular, the ability of TTFields to modulate the tumor microenvironment and reverse the local and systemic immunosuppression could represent a promising strategy to enhance the efficacy of immunotherapy across different tumor types.
期刊介绍:
Translational Oncology publishes the results of novel research investigations which bridge the laboratory and clinical settings including risk assessment, cellular and molecular characterization, prevention, detection, diagnosis and treatment of human cancers with the overall goal of improving the clinical care of oncology patients. Translational Oncology will publish laboratory studies of novel therapeutic interventions as well as clinical trials which evaluate new treatment paradigms for cancer. Peer reviewed manuscript types include Original Reports, Reviews and Editorials.