Yoshinori Kohwi, Xianrong Wong, Mari Grange, Thomas Sexton, Hunter W Richards, Yohko Kitagawa, Shimon Sakaguchi, Ya-Chen Liang, Cheng-Ming Chuong, Vladimir A Botchkarev, Ichiro Taniuchi, Karen L Reddy, Terumi Kohwi-Shigematsu
{"title":"通过SATB1结合碱基解配对区(BURs)组织基因组,为SATB1调控的基因表达提供了一个支架。","authors":"Yoshinori Kohwi, Xianrong Wong, Mari Grange, Thomas Sexton, Hunter W Richards, Yohko Kitagawa, Shimon Sakaguchi, Ya-Chen Liang, Cheng-Ming Chuong, Vladimir A Botchkarev, Ichiro Taniuchi, Karen L Reddy, Terumi Kohwi-Shigematsu","doi":"10.7554/eLife.105915","DOIUrl":null,"url":null,"abstract":"<p><p>Mammalian genomes are organized by multi-level folding; yet how this organization contributes to cell-type-specific transcription remains unclear. SATB1 forms a nuclear substructure that resists high-salt extraction. SATB1 binds base-unpairing regions (BURs), genomic elements with high unwinding propensities. In mouse thymocytes, we found that SATB1 establishes a two-tiered chromatin organization: one through indirect binding to transcriptionally active DNase 1-accessible chromatin and another by direct binding to BURs in the DNase 1-inaccessible nuclear substructure. Recently published ChIP-seq datasets show SATB1 binding to accessible chromatin at enhancers and CTCF sites, but not to BURs. By employing urea ChIP-seq, which retains only directly bound protein:DNA complexes, we found that BURs, but not CTCF sites, are direct SATB1 binding targets genome-wide. BURs bound to the SATB1 nuclear substructure interact with accessible chromatin, crossing multiple topologically associated domains (TADs). SATB1 is required for these megabase-scale interactions linked to cell-type-specific gene expression. BURs are highly enriched within transcriptionally repressive lamina-associated domains (LADs). Besides these BURs, SATB1 anchors some BURs (18%) outside LADs near genes in otherwise accessible chromatin to the SATB1 nuclear substructure. Only a subset of total BURs is bound to SATB1, depending on cell type. Notably, despite the mutually exclusive SATB1-binding profiles uncovered by the two ChIP-seq methods, we found most peaks in both profiles are valid and require SATB1. Based on these and previous data, we propose that the SATB1 protein network forms a chromatin scaffold, providing an interface that connects accessible chromatin to a subnuclear architectural structure, thereby facilitating the three-dimensional organization linked to cell-type-specific gene expression.</p>","PeriodicalId":11640,"journal":{"name":"eLife","volume":"14 ","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12490858/pdf/","citationCount":"0","resultStr":"{\"title\":\"Genome organization by SATB1 binding to base-unpairing regions (BURs) provides a scaffold for SATB1-regulated gene expression.\",\"authors\":\"Yoshinori Kohwi, Xianrong Wong, Mari Grange, Thomas Sexton, Hunter W Richards, Yohko Kitagawa, Shimon Sakaguchi, Ya-Chen Liang, Cheng-Ming Chuong, Vladimir A Botchkarev, Ichiro Taniuchi, Karen L Reddy, Terumi Kohwi-Shigematsu\",\"doi\":\"10.7554/eLife.105915\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mammalian genomes are organized by multi-level folding; yet how this organization contributes to cell-type-specific transcription remains unclear. SATB1 forms a nuclear substructure that resists high-salt extraction. SATB1 binds base-unpairing regions (BURs), genomic elements with high unwinding propensities. In mouse thymocytes, we found that SATB1 establishes a two-tiered chromatin organization: one through indirect binding to transcriptionally active DNase 1-accessible chromatin and another by direct binding to BURs in the DNase 1-inaccessible nuclear substructure. Recently published ChIP-seq datasets show SATB1 binding to accessible chromatin at enhancers and CTCF sites, but not to BURs. By employing urea ChIP-seq, which retains only directly bound protein:DNA complexes, we found that BURs, but not CTCF sites, are direct SATB1 binding targets genome-wide. BURs bound to the SATB1 nuclear substructure interact with accessible chromatin, crossing multiple topologically associated domains (TADs). SATB1 is required for these megabase-scale interactions linked to cell-type-specific gene expression. BURs are highly enriched within transcriptionally repressive lamina-associated domains (LADs). Besides these BURs, SATB1 anchors some BURs (18%) outside LADs near genes in otherwise accessible chromatin to the SATB1 nuclear substructure. Only a subset of total BURs is bound to SATB1, depending on cell type. Notably, despite the mutually exclusive SATB1-binding profiles uncovered by the two ChIP-seq methods, we found most peaks in both profiles are valid and require SATB1. Based on these and previous data, we propose that the SATB1 protein network forms a chromatin scaffold, providing an interface that connects accessible chromatin to a subnuclear architectural structure, thereby facilitating the three-dimensional organization linked to cell-type-specific gene expression.</p>\",\"PeriodicalId\":11640,\"journal\":{\"name\":\"eLife\",\"volume\":\"14 \",\"pages\":\"\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2025-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12490858/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"eLife\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.7554/eLife.105915\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"eLife","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.7554/eLife.105915","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
Genome organization by SATB1 binding to base-unpairing regions (BURs) provides a scaffold for SATB1-regulated gene expression.
Mammalian genomes are organized by multi-level folding; yet how this organization contributes to cell-type-specific transcription remains unclear. SATB1 forms a nuclear substructure that resists high-salt extraction. SATB1 binds base-unpairing regions (BURs), genomic elements with high unwinding propensities. In mouse thymocytes, we found that SATB1 establishes a two-tiered chromatin organization: one through indirect binding to transcriptionally active DNase 1-accessible chromatin and another by direct binding to BURs in the DNase 1-inaccessible nuclear substructure. Recently published ChIP-seq datasets show SATB1 binding to accessible chromatin at enhancers and CTCF sites, but not to BURs. By employing urea ChIP-seq, which retains only directly bound protein:DNA complexes, we found that BURs, but not CTCF sites, are direct SATB1 binding targets genome-wide. BURs bound to the SATB1 nuclear substructure interact with accessible chromatin, crossing multiple topologically associated domains (TADs). SATB1 is required for these megabase-scale interactions linked to cell-type-specific gene expression. BURs are highly enriched within transcriptionally repressive lamina-associated domains (LADs). Besides these BURs, SATB1 anchors some BURs (18%) outside LADs near genes in otherwise accessible chromatin to the SATB1 nuclear substructure. Only a subset of total BURs is bound to SATB1, depending on cell type. Notably, despite the mutually exclusive SATB1-binding profiles uncovered by the two ChIP-seq methods, we found most peaks in both profiles are valid and require SATB1. Based on these and previous data, we propose that the SATB1 protein network forms a chromatin scaffold, providing an interface that connects accessible chromatin to a subnuclear architectural structure, thereby facilitating the three-dimensional organization linked to cell-type-specific gene expression.
期刊介绍:
eLife is a distinguished, not-for-profit, peer-reviewed open access scientific journal that specializes in the fields of biomedical and life sciences. eLife is known for its selective publication process, which includes a variety of article types such as:
Research Articles: Detailed reports of original research findings.
Short Reports: Concise presentations of significant findings that do not warrant a full-length research article.
Tools and Resources: Descriptions of new tools, technologies, or resources that facilitate scientific research.
Research Advances: Brief reports on significant scientific advancements that have immediate implications for the field.
Scientific Correspondence: Short communications that comment on or provide additional information related to published articles.
Review Articles: Comprehensive overviews of a specific topic or field within the life sciences.