Lindsay Jefferson, Patricia D A Lima, Stephen L Archer
{"title":"巨噬细胞可塑性与糖代谢:免疫代谢在肺动脉高压中的作用。","authors":"Lindsay Jefferson, Patricia D A Lima, Stephen L Archer","doi":"10.1042/CS20257363","DOIUrl":null,"url":null,"abstract":"<p><p>Pulmonary arterial hypertension (PAH) is a syndrome characterized by a mean pulmonary artery pressure >20 mmHg and elevated pulmonary vascular resistance >2 Wood Units in the absence of left heart disease, chronic lung disease or hypoxia, and chronic thromboembolic disease. PAH is an obliterative pulmonary arteriopathy that leads to morbidity and mortality, often due to right ventricular failure (RVF). Emerging evidence from preclinical research, using chemical inhibition or genetic depletion of inflammatory mediators, reveals a role for inflammation in the adverse pulmonary vascular remodelling in PAH. More recently, studies have also identified inflammation of the right ventricle (RV) as a potential contributor to RV decompensation and failure. While inflammation contributes to the pathogenesis of PAH, no approved PH-targeted therapies specifically target inflammation. Macrophages are myeloid cells that play a critical role in inflammation and PAH. Their cellular plasticity enables the acquisition of tissue-specific phenotypes and functions that may promote either resolution or exacerbation of inflammatory signalling. Macrophage plasticity in PAH is poorly understood. We examine how alterations in glucose metabolism, particularly the uncoupling of glycolysis from glucose oxidation-a notable feature of PAH observed in various cell populations-impact macrophage polarization and the inflammatory phenotype associated with PAH. The study of immune cell metabolism, known as immunometabolism, is an emerging field that has yet to be explored in PAH. Improving understanding of the inflammatory mechanisms in PAH, particularly novel pathways related to macrophage immunometabolism, may identify new targets for anti-inflammatory therapies for PAH.</p>","PeriodicalId":10475,"journal":{"name":"Clinical science","volume":"138 19","pages":""},"PeriodicalIF":7.7000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Macrophage plasticity and glucose metabolism: the role of immunometabolism in pulmonary arterial hypertension.\",\"authors\":\"Lindsay Jefferson, Patricia D A Lima, Stephen L Archer\",\"doi\":\"10.1042/CS20257363\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Pulmonary arterial hypertension (PAH) is a syndrome characterized by a mean pulmonary artery pressure >20 mmHg and elevated pulmonary vascular resistance >2 Wood Units in the absence of left heart disease, chronic lung disease or hypoxia, and chronic thromboembolic disease. PAH is an obliterative pulmonary arteriopathy that leads to morbidity and mortality, often due to right ventricular failure (RVF). Emerging evidence from preclinical research, using chemical inhibition or genetic depletion of inflammatory mediators, reveals a role for inflammation in the adverse pulmonary vascular remodelling in PAH. More recently, studies have also identified inflammation of the right ventricle (RV) as a potential contributor to RV decompensation and failure. While inflammation contributes to the pathogenesis of PAH, no approved PH-targeted therapies specifically target inflammation. Macrophages are myeloid cells that play a critical role in inflammation and PAH. Their cellular plasticity enables the acquisition of tissue-specific phenotypes and functions that may promote either resolution or exacerbation of inflammatory signalling. Macrophage plasticity in PAH is poorly understood. We examine how alterations in glucose metabolism, particularly the uncoupling of glycolysis from glucose oxidation-a notable feature of PAH observed in various cell populations-impact macrophage polarization and the inflammatory phenotype associated with PAH. The study of immune cell metabolism, known as immunometabolism, is an emerging field that has yet to be explored in PAH. Improving understanding of the inflammatory mechanisms in PAH, particularly novel pathways related to macrophage immunometabolism, may identify new targets for anti-inflammatory therapies for PAH.</p>\",\"PeriodicalId\":10475,\"journal\":{\"name\":\"Clinical science\",\"volume\":\"138 19\",\"pages\":\"\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical science\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1042/CS20257363\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical science","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1042/CS20257363","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Macrophage plasticity and glucose metabolism: the role of immunometabolism in pulmonary arterial hypertension.
Pulmonary arterial hypertension (PAH) is a syndrome characterized by a mean pulmonary artery pressure >20 mmHg and elevated pulmonary vascular resistance >2 Wood Units in the absence of left heart disease, chronic lung disease or hypoxia, and chronic thromboembolic disease. PAH is an obliterative pulmonary arteriopathy that leads to morbidity and mortality, often due to right ventricular failure (RVF). Emerging evidence from preclinical research, using chemical inhibition or genetic depletion of inflammatory mediators, reveals a role for inflammation in the adverse pulmonary vascular remodelling in PAH. More recently, studies have also identified inflammation of the right ventricle (RV) as a potential contributor to RV decompensation and failure. While inflammation contributes to the pathogenesis of PAH, no approved PH-targeted therapies specifically target inflammation. Macrophages are myeloid cells that play a critical role in inflammation and PAH. Their cellular plasticity enables the acquisition of tissue-specific phenotypes and functions that may promote either resolution or exacerbation of inflammatory signalling. Macrophage plasticity in PAH is poorly understood. We examine how alterations in glucose metabolism, particularly the uncoupling of glycolysis from glucose oxidation-a notable feature of PAH observed in various cell populations-impact macrophage polarization and the inflammatory phenotype associated with PAH. The study of immune cell metabolism, known as immunometabolism, is an emerging field that has yet to be explored in PAH. Improving understanding of the inflammatory mechanisms in PAH, particularly novel pathways related to macrophage immunometabolism, may identify new targets for anti-inflammatory therapies for PAH.
期刊介绍:
Translating molecular bioscience and experimental research into medical insights, Clinical Science offers multi-disciplinary coverage and clinical perspectives to advance human health.
Its international Editorial Board is charged with selecting peer-reviewed original papers of the highest scientific merit covering the broad spectrum of biomedical specialities including, although not exclusively:
Cardiovascular system
Cerebrovascular system
Gastrointestinal tract and liver
Genomic medicine
Infection and immunity
Inflammation
Oncology
Metabolism
Endocrinology and nutrition
Nephrology
Circulation
Respiratory system
Vascular biology
Molecular pathology.