Antonio Mazzei, Sebastian Martewicz, Ramin Amiri, Meihua Cui, Nicola Elvassore, Camilla Luni
{"title":"功能性CRISPR-Cas9基因敲除筛选人成纤维细胞迁移倾向的遗传决定因素。","authors":"Antonio Mazzei, Sebastian Martewicz, Ramin Amiri, Meihua Cui, Nicola Elvassore, Camilla Luni","doi":"10.1002/btpr.70076","DOIUrl":null,"url":null,"abstract":"<p><p>Directional cell migration plays a central role in a wide range of physiological and pathological conditions, such as embryonic development or tumor metastasis. Steps involved in cell migration include cell polarization, formation of membrane protrusions at the cell front side and adhesion disassembly at the rear side, and a general cytoskeletal rearrangement. Overall, it is a complex phenomenon at the interface between mechanical forces and biochemical signaling, with cell-specific and context-specific molecular events acting in the process. Here, we focus on human fibroblast migration induced by a biochemical gradient with an approach that connects the identification of molecular players with the actual mechanical function. We show how to screen for genes and miRNAs involved in migration by the direct integration of a high-throughput gene editing method, the CRISPR-Cas9 knockout pool screening, and a well-established functional assay, the transwell migration assay. Moreover, the screening has been performed after an expansion step aiming at the removal of all the essential genes and miRNAs, so as to identify targets related to the cell migratory ability without affecting other major cellular functions. The results confirm known genes involved in migration, but also highlight new candidates. This work establishes a methodological advancement in the use of CRISPR technology for functional screening and represents a resource for candidate genes and miRNAs playing a role in human fibroblast directional migration under biochemical gradient.</p>","PeriodicalId":8856,"journal":{"name":"Biotechnology Progress","volume":" ","pages":"e70076"},"PeriodicalIF":2.5000,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Functional CRISPR-Cas9 knockout screening of the genetic determinants of human fibroblast migration propensity.\",\"authors\":\"Antonio Mazzei, Sebastian Martewicz, Ramin Amiri, Meihua Cui, Nicola Elvassore, Camilla Luni\",\"doi\":\"10.1002/btpr.70076\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Directional cell migration plays a central role in a wide range of physiological and pathological conditions, such as embryonic development or tumor metastasis. Steps involved in cell migration include cell polarization, formation of membrane protrusions at the cell front side and adhesion disassembly at the rear side, and a general cytoskeletal rearrangement. Overall, it is a complex phenomenon at the interface between mechanical forces and biochemical signaling, with cell-specific and context-specific molecular events acting in the process. Here, we focus on human fibroblast migration induced by a biochemical gradient with an approach that connects the identification of molecular players with the actual mechanical function. We show how to screen for genes and miRNAs involved in migration by the direct integration of a high-throughput gene editing method, the CRISPR-Cas9 knockout pool screening, and a well-established functional assay, the transwell migration assay. Moreover, the screening has been performed after an expansion step aiming at the removal of all the essential genes and miRNAs, so as to identify targets related to the cell migratory ability without affecting other major cellular functions. The results confirm known genes involved in migration, but also highlight new candidates. This work establishes a methodological advancement in the use of CRISPR technology for functional screening and represents a resource for candidate genes and miRNAs playing a role in human fibroblast directional migration under biochemical gradient.</p>\",\"PeriodicalId\":8856,\"journal\":{\"name\":\"Biotechnology Progress\",\"volume\":\" \",\"pages\":\"e70076\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotechnology Progress\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/btpr.70076\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Progress","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/btpr.70076","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Functional CRISPR-Cas9 knockout screening of the genetic determinants of human fibroblast migration propensity.
Directional cell migration plays a central role in a wide range of physiological and pathological conditions, such as embryonic development or tumor metastasis. Steps involved in cell migration include cell polarization, formation of membrane protrusions at the cell front side and adhesion disassembly at the rear side, and a general cytoskeletal rearrangement. Overall, it is a complex phenomenon at the interface between mechanical forces and biochemical signaling, with cell-specific and context-specific molecular events acting in the process. Here, we focus on human fibroblast migration induced by a biochemical gradient with an approach that connects the identification of molecular players with the actual mechanical function. We show how to screen for genes and miRNAs involved in migration by the direct integration of a high-throughput gene editing method, the CRISPR-Cas9 knockout pool screening, and a well-established functional assay, the transwell migration assay. Moreover, the screening has been performed after an expansion step aiming at the removal of all the essential genes and miRNAs, so as to identify targets related to the cell migratory ability without affecting other major cellular functions. The results confirm known genes involved in migration, but also highlight new candidates. This work establishes a methodological advancement in the use of CRISPR technology for functional screening and represents a resource for candidate genes and miRNAs playing a role in human fibroblast directional migration under biochemical gradient.
期刊介绍:
Biotechnology Progress , an official, bimonthly publication of the American Institute of Chemical Engineers and its technological community, the Society for Biological Engineering, features peer-reviewed research articles, reviews, and descriptions of emerging techniques for the development and design of new processes, products, and devices for the biotechnology, biopharmaceutical and bioprocess industries.
Widespread interest includes application of biological and engineering principles in fields such as applied cellular physiology and metabolic engineering, biocatalysis and bioreactor design, bioseparations and downstream processing, cell culture and tissue engineering, biosensors and process control, bioinformatics and systems biology, biomaterials and artificial organs, stem cell biology and genetics, and plant biology and food science. Manuscripts concerning the design of related processes, products, or devices are also encouraged. Four types of manuscripts are printed in the Journal: Research Papers, Topical or Review Papers, Letters to the Editor, and R & D Notes.