利用深层统计潜力对蛋白质-肽相互作用进行生物物理评分。

IF 8.4 1区 医学 Q1 CHEMISTRY, MULTIDISCIPLINARY
De-Jun Jiang, Hui-Feng Zhao, Hong-Yan Du, Yu Kang, Pei-Chen Pan, Zhen-Xing Wu, Yun-Dian Zeng, O-Din Zhang, Xiao-Rui Wang, Ji-Ke Wang, Yuan-Sheng Huang, Yi-Hao Zhao, Chang-Yu Hsieh, Dong-Sheng Cao, Hui-Yong Sun, Ting-Jun Hou
{"title":"利用深层统计潜力对蛋白质-肽相互作用进行生物物理评分。","authors":"De-Jun Jiang, Hui-Feng Zhao, Hong-Yan Du, Yu Kang, Pei-Chen Pan, Zhen-Xing Wu, Yun-Dian Zeng, O-Din Zhang, Xiao-Rui Wang, Ji-Ke Wang, Yuan-Sheng Huang, Yi-Hao Zhao, Chang-Yu Hsieh, Dong-Sheng Cao, Hui-Yong Sun, Ting-Jun Hou","doi":"10.1038/s41401-025-01659-8","DOIUrl":null,"url":null,"abstract":"<p><p>Protein-peptide interactions (PpIs) play a critical role in major cellular processes. Recently, a number of machine learning (ML)-based methods have been developed to predict PpIs, but most of them rely heavily on sequence data, limiting their ability to capture the generalized molecular interactions in three-dimensional (3D) space, which is crucial for understanding protein-peptide binding mechanisms and advancing peptide therapeutics. Protein-peptide docking approaches provide a feasible way to generate the 3D models of PpIs, but they often suffer from low-precision scoring functions (SFs). To address this, we developed DeepPpIScore, a novel SF for PpIs that employs unsupervised geometric deep learning coupled with a physics-inspired statistical potential. Trained solely on curated experimental structures without binding affinity data or classification labels, DeepPpIScore exhibits broad generalization across multiple tasks. Our comprehensive evaluations in bound and unbound peptide bioactive conformation prediction, binding affinity prediction, and binding pair identification reveal that DeepPpIScore outperforms or matches state-of-the-art baselines, including popular protein-protein SFs, ML-based methods, and AlphaFold-Multimer 2.3 (AF-M 2.3). Notably, DeepPpIScore achieves superior results in peptide binding mode prediction compared to AF-M 2.3. More importantly, DeepPpIScore offers interpretability in terms of hotspot preferences at protein interfaces, physics-informed noncovalent interactions, and protein-peptide binding energies.</p>","PeriodicalId":6942,"journal":{"name":"Acta Pharmacologica Sinica","volume":" ","pages":""},"PeriodicalIF":8.4000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Harnessing deep statistical potential for biophysical scoring of protein-peptide interactions.\",\"authors\":\"De-Jun Jiang, Hui-Feng Zhao, Hong-Yan Du, Yu Kang, Pei-Chen Pan, Zhen-Xing Wu, Yun-Dian Zeng, O-Din Zhang, Xiao-Rui Wang, Ji-Ke Wang, Yuan-Sheng Huang, Yi-Hao Zhao, Chang-Yu Hsieh, Dong-Sheng Cao, Hui-Yong Sun, Ting-Jun Hou\",\"doi\":\"10.1038/s41401-025-01659-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Protein-peptide interactions (PpIs) play a critical role in major cellular processes. Recently, a number of machine learning (ML)-based methods have been developed to predict PpIs, but most of them rely heavily on sequence data, limiting their ability to capture the generalized molecular interactions in three-dimensional (3D) space, which is crucial for understanding protein-peptide binding mechanisms and advancing peptide therapeutics. Protein-peptide docking approaches provide a feasible way to generate the 3D models of PpIs, but they often suffer from low-precision scoring functions (SFs). To address this, we developed DeepPpIScore, a novel SF for PpIs that employs unsupervised geometric deep learning coupled with a physics-inspired statistical potential. Trained solely on curated experimental structures without binding affinity data or classification labels, DeepPpIScore exhibits broad generalization across multiple tasks. Our comprehensive evaluations in bound and unbound peptide bioactive conformation prediction, binding affinity prediction, and binding pair identification reveal that DeepPpIScore outperforms or matches state-of-the-art baselines, including popular protein-protein SFs, ML-based methods, and AlphaFold-Multimer 2.3 (AF-M 2.3). Notably, DeepPpIScore achieves superior results in peptide binding mode prediction compared to AF-M 2.3. More importantly, DeepPpIScore offers interpretability in terms of hotspot preferences at protein interfaces, physics-informed noncovalent interactions, and protein-peptide binding energies.</p>\",\"PeriodicalId\":6942,\"journal\":{\"name\":\"Acta Pharmacologica Sinica\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":8.4000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Pharmacologica Sinica\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41401-025-01659-8\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Pharmacologica Sinica","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41401-025-01659-8","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

蛋白-肽相互作用(PpIs)在主要的细胞过程中起着关键作用。最近,已经开发了许多基于机器学习(ML)的方法来预测ppi,但大多数方法严重依赖于序列数据,限制了它们在三维(3D)空间中捕获广义分子相互作用的能力,而三维(3D)空间对于理解蛋白质-肽结合机制和推进肽治疗至关重要。蛋白-肽对接方法为PpIs的三维模型生成提供了一种可行的方法,但其精度评分函数(sf)较低。为了解决这个问题,我们开发了DeepPpIScore,这是一款针对ppi的新颖SF,它采用了无监督的几何深度学习和物理启发的统计潜力。在没有绑定亲和数据或分类标签的情况下,仅对策划的实验结构进行训练,DeepPpIScore在多个任务中表现出广泛的泛化。我们在结合和非结合肽生物活性构象预测、结合亲和力预测和结合对鉴定方面的综合评估表明,DeepPpIScore优于或匹配最先进的基线,包括流行的蛋白蛋白sf、基于ml的方法和alphafold - multitimer 2.3 (AF-M 2.3)。值得注意的是,与af - m2.3相比,DeepPpIScore在肽结合模式预测方面取得了更好的结果。更重要的是,DeepPpIScore在蛋白质界面的热点偏好、物理信息非共价相互作用和蛋白质-肽结合能方面提供了可解释性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Harnessing deep statistical potential for biophysical scoring of protein-peptide interactions.

Protein-peptide interactions (PpIs) play a critical role in major cellular processes. Recently, a number of machine learning (ML)-based methods have been developed to predict PpIs, but most of them rely heavily on sequence data, limiting their ability to capture the generalized molecular interactions in three-dimensional (3D) space, which is crucial for understanding protein-peptide binding mechanisms and advancing peptide therapeutics. Protein-peptide docking approaches provide a feasible way to generate the 3D models of PpIs, but they often suffer from low-precision scoring functions (SFs). To address this, we developed DeepPpIScore, a novel SF for PpIs that employs unsupervised geometric deep learning coupled with a physics-inspired statistical potential. Trained solely on curated experimental structures without binding affinity data or classification labels, DeepPpIScore exhibits broad generalization across multiple tasks. Our comprehensive evaluations in bound and unbound peptide bioactive conformation prediction, binding affinity prediction, and binding pair identification reveal that DeepPpIScore outperforms or matches state-of-the-art baselines, including popular protein-protein SFs, ML-based methods, and AlphaFold-Multimer 2.3 (AF-M 2.3). Notably, DeepPpIScore achieves superior results in peptide binding mode prediction compared to AF-M 2.3. More importantly, DeepPpIScore offers interpretability in terms of hotspot preferences at protein interfaces, physics-informed noncovalent interactions, and protein-peptide binding energies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Pharmacologica Sinica
Acta Pharmacologica Sinica 医学-化学综合
CiteScore
15.10
自引率
2.40%
发文量
4365
审稿时长
2 months
期刊介绍: APS (Acta Pharmacologica Sinica) welcomes submissions from diverse areas of pharmacology and the life sciences. While we encourage contributions across a broad spectrum, topics of particular interest include, but are not limited to: anticancer pharmacology, cardiovascular and pulmonary pharmacology, clinical pharmacology, drug discovery, gastrointestinal and hepatic pharmacology, genitourinary, renal, and endocrine pharmacology, immunopharmacology and inflammation, molecular and cellular pharmacology, neuropharmacology, pharmaceutics, and pharmacokinetics. Join us in sharing your research and insights in pharmacology and the life sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信