{"title":"利用深层统计潜力对蛋白质-肽相互作用进行生物物理评分。","authors":"De-Jun Jiang, Hui-Feng Zhao, Hong-Yan Du, Yu Kang, Pei-Chen Pan, Zhen-Xing Wu, Yun-Dian Zeng, O-Din Zhang, Xiao-Rui Wang, Ji-Ke Wang, Yuan-Sheng Huang, Yi-Hao Zhao, Chang-Yu Hsieh, Dong-Sheng Cao, Hui-Yong Sun, Ting-Jun Hou","doi":"10.1038/s41401-025-01659-8","DOIUrl":null,"url":null,"abstract":"<p><p>Protein-peptide interactions (PpIs) play a critical role in major cellular processes. Recently, a number of machine learning (ML)-based methods have been developed to predict PpIs, but most of them rely heavily on sequence data, limiting their ability to capture the generalized molecular interactions in three-dimensional (3D) space, which is crucial for understanding protein-peptide binding mechanisms and advancing peptide therapeutics. Protein-peptide docking approaches provide a feasible way to generate the 3D models of PpIs, but they often suffer from low-precision scoring functions (SFs). To address this, we developed DeepPpIScore, a novel SF for PpIs that employs unsupervised geometric deep learning coupled with a physics-inspired statistical potential. Trained solely on curated experimental structures without binding affinity data or classification labels, DeepPpIScore exhibits broad generalization across multiple tasks. Our comprehensive evaluations in bound and unbound peptide bioactive conformation prediction, binding affinity prediction, and binding pair identification reveal that DeepPpIScore outperforms or matches state-of-the-art baselines, including popular protein-protein SFs, ML-based methods, and AlphaFold-Multimer 2.3 (AF-M 2.3). Notably, DeepPpIScore achieves superior results in peptide binding mode prediction compared to AF-M 2.3. More importantly, DeepPpIScore offers interpretability in terms of hotspot preferences at protein interfaces, physics-informed noncovalent interactions, and protein-peptide binding energies.</p>","PeriodicalId":6942,"journal":{"name":"Acta Pharmacologica Sinica","volume":" ","pages":""},"PeriodicalIF":8.4000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Harnessing deep statistical potential for biophysical scoring of protein-peptide interactions.\",\"authors\":\"De-Jun Jiang, Hui-Feng Zhao, Hong-Yan Du, Yu Kang, Pei-Chen Pan, Zhen-Xing Wu, Yun-Dian Zeng, O-Din Zhang, Xiao-Rui Wang, Ji-Ke Wang, Yuan-Sheng Huang, Yi-Hao Zhao, Chang-Yu Hsieh, Dong-Sheng Cao, Hui-Yong Sun, Ting-Jun Hou\",\"doi\":\"10.1038/s41401-025-01659-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Protein-peptide interactions (PpIs) play a critical role in major cellular processes. Recently, a number of machine learning (ML)-based methods have been developed to predict PpIs, but most of them rely heavily on sequence data, limiting their ability to capture the generalized molecular interactions in three-dimensional (3D) space, which is crucial for understanding protein-peptide binding mechanisms and advancing peptide therapeutics. Protein-peptide docking approaches provide a feasible way to generate the 3D models of PpIs, but they often suffer from low-precision scoring functions (SFs). To address this, we developed DeepPpIScore, a novel SF for PpIs that employs unsupervised geometric deep learning coupled with a physics-inspired statistical potential. Trained solely on curated experimental structures without binding affinity data or classification labels, DeepPpIScore exhibits broad generalization across multiple tasks. Our comprehensive evaluations in bound and unbound peptide bioactive conformation prediction, binding affinity prediction, and binding pair identification reveal that DeepPpIScore outperforms or matches state-of-the-art baselines, including popular protein-protein SFs, ML-based methods, and AlphaFold-Multimer 2.3 (AF-M 2.3). Notably, DeepPpIScore achieves superior results in peptide binding mode prediction compared to AF-M 2.3. More importantly, DeepPpIScore offers interpretability in terms of hotspot preferences at protein interfaces, physics-informed noncovalent interactions, and protein-peptide binding energies.</p>\",\"PeriodicalId\":6942,\"journal\":{\"name\":\"Acta Pharmacologica Sinica\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":8.4000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Pharmacologica Sinica\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41401-025-01659-8\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Pharmacologica Sinica","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41401-025-01659-8","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Harnessing deep statistical potential for biophysical scoring of protein-peptide interactions.
Protein-peptide interactions (PpIs) play a critical role in major cellular processes. Recently, a number of machine learning (ML)-based methods have been developed to predict PpIs, but most of them rely heavily on sequence data, limiting their ability to capture the generalized molecular interactions in three-dimensional (3D) space, which is crucial for understanding protein-peptide binding mechanisms and advancing peptide therapeutics. Protein-peptide docking approaches provide a feasible way to generate the 3D models of PpIs, but they often suffer from low-precision scoring functions (SFs). To address this, we developed DeepPpIScore, a novel SF for PpIs that employs unsupervised geometric deep learning coupled with a physics-inspired statistical potential. Trained solely on curated experimental structures without binding affinity data or classification labels, DeepPpIScore exhibits broad generalization across multiple tasks. Our comprehensive evaluations in bound and unbound peptide bioactive conformation prediction, binding affinity prediction, and binding pair identification reveal that DeepPpIScore outperforms or matches state-of-the-art baselines, including popular protein-protein SFs, ML-based methods, and AlphaFold-Multimer 2.3 (AF-M 2.3). Notably, DeepPpIScore achieves superior results in peptide binding mode prediction compared to AF-M 2.3. More importantly, DeepPpIScore offers interpretability in terms of hotspot preferences at protein interfaces, physics-informed noncovalent interactions, and protein-peptide binding energies.
期刊介绍:
APS (Acta Pharmacologica Sinica) welcomes submissions from diverse areas of pharmacology and the life sciences. While we encourage contributions across a broad spectrum, topics of particular interest include, but are not limited to: anticancer pharmacology, cardiovascular and pulmonary pharmacology, clinical pharmacology, drug discovery, gastrointestinal and hepatic pharmacology, genitourinary, renal, and endocrine pharmacology, immunopharmacology and inflammation, molecular and cellular pharmacology, neuropharmacology, pharmaceutics, and pharmacokinetics. Join us in sharing your research and insights in pharmacology and the life sciences.