Yu-Hong Cao, Xiao-Chen Wang, Hong-Kun Wang, Zong-Kuai Yang, Dan-Dan Liu, Yang Yang, Rong Kuang, Ping Liang
{"title":"ros诱导的hERG钾通道降解有助于阿立哌唑诱导的QTc间隔延长。","authors":"Yu-Hong Cao, Xiao-Chen Wang, Hong-Kun Wang, Zong-Kuai Yang, Dan-Dan Liu, Yang Yang, Rong Kuang, Ping Liang","doi":"10.1038/s41401-025-01648-x","DOIUrl":null,"url":null,"abstract":"<p><p>As antipsychotic administration often persists for a lifetime, antipsychotic-induced cardiotoxicity (AIC) becomes a significant and potentially life-threatening side effect. Owing to the lack of an appropriate human cardiomyocyte experimental model, current research on AIC is primarily based on clinical case reports. In this study, we generated human iPSC-derived cardiomyocytes (iPSC-CMs) and characterized the cardiotoxicity of 6 antipsychotics (clozapine, haloperidol, quetiapine, olanzapine, risperidone, and aripiprazole) used in clinical practice. Multielectrode array analysis revealed that all 6 antipsychotics, when used within their respective clinical plasma concentration (CPC) ranges, were likely to cause a significantly prolonged field potential duration (FPD) in iPSC-CMs. Moreover, administration of the third-generation antipsychotic aripiprazole (10 mg/kg, i.g.) led to marked QT interval prolongation in beagle dogs. We demonstrated that aripiprazole administration resulted in mitochondrial damage and oxidative stress, which accelerated protein degradation of human ether-à-go-go-related gene (hERG) channels, generating a rapid delayed rectifying potassium current (I<sub>Kr</sub>) through the proteasome pathway, ultimately leading to FPD prolongation. Scavenging reactive oxygen species or suppressing the ubiquitin‒proteasome pathway (UPP) significantly restored hERG channel function and rescued the prolonged FPD phenotype in aripiprazole-treated iPSC-CMs. Our results suggest that caution should be taken when aripiprazole is prescribed to high-risk patients with preexisting comorbidities. Manipulation of excessive oxidative stress or suppression of the UPP may offer novel therapeutic strategies for mitigating aripiprazole-induced proarrhythmic risk.</p>","PeriodicalId":6942,"journal":{"name":"Acta Pharmacologica Sinica","volume":" ","pages":""},"PeriodicalIF":8.4000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ROS-induced degradation of hERG potassium channels contributes to aripiprazole-induced prolongation of the QTc interval.\",\"authors\":\"Yu-Hong Cao, Xiao-Chen Wang, Hong-Kun Wang, Zong-Kuai Yang, Dan-Dan Liu, Yang Yang, Rong Kuang, Ping Liang\",\"doi\":\"10.1038/s41401-025-01648-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>As antipsychotic administration often persists for a lifetime, antipsychotic-induced cardiotoxicity (AIC) becomes a significant and potentially life-threatening side effect. Owing to the lack of an appropriate human cardiomyocyte experimental model, current research on AIC is primarily based on clinical case reports. In this study, we generated human iPSC-derived cardiomyocytes (iPSC-CMs) and characterized the cardiotoxicity of 6 antipsychotics (clozapine, haloperidol, quetiapine, olanzapine, risperidone, and aripiprazole) used in clinical practice. Multielectrode array analysis revealed that all 6 antipsychotics, when used within their respective clinical plasma concentration (CPC) ranges, were likely to cause a significantly prolonged field potential duration (FPD) in iPSC-CMs. Moreover, administration of the third-generation antipsychotic aripiprazole (10 mg/kg, i.g.) led to marked QT interval prolongation in beagle dogs. We demonstrated that aripiprazole administration resulted in mitochondrial damage and oxidative stress, which accelerated protein degradation of human ether-à-go-go-related gene (hERG) channels, generating a rapid delayed rectifying potassium current (I<sub>Kr</sub>) through the proteasome pathway, ultimately leading to FPD prolongation. Scavenging reactive oxygen species or suppressing the ubiquitin‒proteasome pathway (UPP) significantly restored hERG channel function and rescued the prolonged FPD phenotype in aripiprazole-treated iPSC-CMs. Our results suggest that caution should be taken when aripiprazole is prescribed to high-risk patients with preexisting comorbidities. Manipulation of excessive oxidative stress or suppression of the UPP may offer novel therapeutic strategies for mitigating aripiprazole-induced proarrhythmic risk.</p>\",\"PeriodicalId\":6942,\"journal\":{\"name\":\"Acta Pharmacologica Sinica\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":8.4000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Pharmacologica Sinica\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41401-025-01648-x\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Pharmacologica Sinica","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41401-025-01648-x","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
ROS-induced degradation of hERG potassium channels contributes to aripiprazole-induced prolongation of the QTc interval.
As antipsychotic administration often persists for a lifetime, antipsychotic-induced cardiotoxicity (AIC) becomes a significant and potentially life-threatening side effect. Owing to the lack of an appropriate human cardiomyocyte experimental model, current research on AIC is primarily based on clinical case reports. In this study, we generated human iPSC-derived cardiomyocytes (iPSC-CMs) and characterized the cardiotoxicity of 6 antipsychotics (clozapine, haloperidol, quetiapine, olanzapine, risperidone, and aripiprazole) used in clinical practice. Multielectrode array analysis revealed that all 6 antipsychotics, when used within their respective clinical plasma concentration (CPC) ranges, were likely to cause a significantly prolonged field potential duration (FPD) in iPSC-CMs. Moreover, administration of the third-generation antipsychotic aripiprazole (10 mg/kg, i.g.) led to marked QT interval prolongation in beagle dogs. We demonstrated that aripiprazole administration resulted in mitochondrial damage and oxidative stress, which accelerated protein degradation of human ether-à-go-go-related gene (hERG) channels, generating a rapid delayed rectifying potassium current (IKr) through the proteasome pathway, ultimately leading to FPD prolongation. Scavenging reactive oxygen species or suppressing the ubiquitin‒proteasome pathway (UPP) significantly restored hERG channel function and rescued the prolonged FPD phenotype in aripiprazole-treated iPSC-CMs. Our results suggest that caution should be taken when aripiprazole is prescribed to high-risk patients with preexisting comorbidities. Manipulation of excessive oxidative stress or suppression of the UPP may offer novel therapeutic strategies for mitigating aripiprazole-induced proarrhythmic risk.
期刊介绍:
APS (Acta Pharmacologica Sinica) welcomes submissions from diverse areas of pharmacology and the life sciences. While we encourage contributions across a broad spectrum, topics of particular interest include, but are not limited to: anticancer pharmacology, cardiovascular and pulmonary pharmacology, clinical pharmacology, drug discovery, gastrointestinal and hepatic pharmacology, genitourinary, renal, and endocrine pharmacology, immunopharmacology and inflammation, molecular and cellular pharmacology, neuropharmacology, pharmaceutics, and pharmacokinetics. Join us in sharing your research and insights in pharmacology and the life sciences.