Ayron Andrey da Silva Lima, Duber M. Murillo, A. A. G. von Zuben, Richard Landers, Douglas S. Oliveira, Mônica A. Cotta
{"title":"镍薄膜的ph依赖性点蚀","authors":"Ayron Andrey da Silva Lima, Duber M. Murillo, A. A. G. von Zuben, Richard Landers, Douglas S. Oliveira, Mônica A. Cotta","doi":"10.1002/maco.12004","DOIUrl":null,"url":null,"abstract":"<p>Nickel thin films are widely used in applications requiring corrosion resistance, but in chloride environments, localized breakdown of the passive layer can lead to pitting corrosion. This study investigates the pitting behavior of Ni thin films in chloride solutions with glycine and calcium ions as inhibitors, under varying pH. Oxygen plasma treatment induced surface defects that modulated pit density. At low pH, severe corrosion was observed, while higher pH led to passivation via nickel oxide and calcium carbonate formation. Microscopy and XPS analyses revealed pH-dependent changes in pit morphology and density. Under intermediate pH, localized redeposition of nickel was detected at pit centers, forming nanoscale features. Finite element simulations confirmed that pit geometry creates a chemical potential gradient driving inward metal flux. These results advance the understanding of pitting corrosion in nickel films and highlight the influence of pH, inhibitors, and surface condition on corrosion processes.</p>","PeriodicalId":18225,"journal":{"name":"Materials and Corrosion-werkstoffe Und Korrosion","volume":"76 10","pages":"1445-1452"},"PeriodicalIF":2.0000,"publicationDate":"2025-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/maco.12004","citationCount":"0","resultStr":"{\"title\":\"pH-Dependent Pitting Corrosion in Nickel Thin Films\",\"authors\":\"Ayron Andrey da Silva Lima, Duber M. Murillo, A. A. G. von Zuben, Richard Landers, Douglas S. Oliveira, Mônica A. Cotta\",\"doi\":\"10.1002/maco.12004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Nickel thin films are widely used in applications requiring corrosion resistance, but in chloride environments, localized breakdown of the passive layer can lead to pitting corrosion. This study investigates the pitting behavior of Ni thin films in chloride solutions with glycine and calcium ions as inhibitors, under varying pH. Oxygen plasma treatment induced surface defects that modulated pit density. At low pH, severe corrosion was observed, while higher pH led to passivation via nickel oxide and calcium carbonate formation. Microscopy and XPS analyses revealed pH-dependent changes in pit morphology and density. Under intermediate pH, localized redeposition of nickel was detected at pit centers, forming nanoscale features. Finite element simulations confirmed that pit geometry creates a chemical potential gradient driving inward metal flux. These results advance the understanding of pitting corrosion in nickel films and highlight the influence of pH, inhibitors, and surface condition on corrosion processes.</p>\",\"PeriodicalId\":18225,\"journal\":{\"name\":\"Materials and Corrosion-werkstoffe Und Korrosion\",\"volume\":\"76 10\",\"pages\":\"1445-1452\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/maco.12004\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials and Corrosion-werkstoffe Und Korrosion\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/maco.12004\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials and Corrosion-werkstoffe Und Korrosion","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/maco.12004","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
pH-Dependent Pitting Corrosion in Nickel Thin Films
Nickel thin films are widely used in applications requiring corrosion resistance, but in chloride environments, localized breakdown of the passive layer can lead to pitting corrosion. This study investigates the pitting behavior of Ni thin films in chloride solutions with glycine and calcium ions as inhibitors, under varying pH. Oxygen plasma treatment induced surface defects that modulated pit density. At low pH, severe corrosion was observed, while higher pH led to passivation via nickel oxide and calcium carbonate formation. Microscopy and XPS analyses revealed pH-dependent changes in pit morphology and density. Under intermediate pH, localized redeposition of nickel was detected at pit centers, forming nanoscale features. Finite element simulations confirmed that pit geometry creates a chemical potential gradient driving inward metal flux. These results advance the understanding of pitting corrosion in nickel films and highlight the influence of pH, inhibitors, and surface condition on corrosion processes.
期刊介绍:
Materials and Corrosion is the leading European journal in its field, providing rapid and comprehensive coverage of the subject and specifically highlighting the increasing importance of corrosion research and prevention.
Several sections exclusive to Materials and Corrosion bring you closer to the current events in the field of corrosion research and add to the impact this journal can make on your work.