{"title":"一般相互作用势的Gross-Pitaevskii极限下玻色气体的大正则自由能的上界","authors":"Marco Caporaletti, Andreas Deuchert","doi":"10.1007/s00023-024-01505-3","DOIUrl":null,"url":null,"abstract":"<div><p>We consider a homogeneous Bose gas in the Gross–Pitaevskii limit at temperatures that are comparable to the critical temperature for Bose–Einstein condensation. Recently, an upper bound for the grand canonical free energy was proved in Boccato et al. (SIAM J Math Anal 56(2):2611–2660, 2024) capturing two novel contributions. First, the free energy of the interacting condensate is given in terms of an effective theory describing the probability distribution of the number of condensed particles. Second, the free energy of the thermally excited particles equals that of a temperature-dependent Bogoliubov Hamiltonian. We extend this result to a more general class of interaction potentials, including interactions with a hard core. Our proof follows a different approach than the one in Boccato et al. (SIAM J Math Anal 56(2):2611–2660, 2024): We model microscopic correlations between the particles by a Jastrow factor and exploit a cancellation in the computation of the energy that emerges due to the different length scales in the system.</p></div>","PeriodicalId":463,"journal":{"name":"Annales Henri Poincaré","volume":"26 10","pages":"3767 - 3827"},"PeriodicalIF":1.3000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00023-024-01505-3.pdf","citationCount":"0","resultStr":"{\"title\":\"Upper Bound for the Grand Canonical Free Energy of the Bose Gas in the Gross–Pitaevskii Limit for General Interaction Potentials\",\"authors\":\"Marco Caporaletti, Andreas Deuchert\",\"doi\":\"10.1007/s00023-024-01505-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We consider a homogeneous Bose gas in the Gross–Pitaevskii limit at temperatures that are comparable to the critical temperature for Bose–Einstein condensation. Recently, an upper bound for the grand canonical free energy was proved in Boccato et al. (SIAM J Math Anal 56(2):2611–2660, 2024) capturing two novel contributions. First, the free energy of the interacting condensate is given in terms of an effective theory describing the probability distribution of the number of condensed particles. Second, the free energy of the thermally excited particles equals that of a temperature-dependent Bogoliubov Hamiltonian. We extend this result to a more general class of interaction potentials, including interactions with a hard core. Our proof follows a different approach than the one in Boccato et al. (SIAM J Math Anal 56(2):2611–2660, 2024): We model microscopic correlations between the particles by a Jastrow factor and exploit a cancellation in the computation of the energy that emerges due to the different length scales in the system.</p></div>\",\"PeriodicalId\":463,\"journal\":{\"name\":\"Annales Henri Poincaré\",\"volume\":\"26 10\",\"pages\":\"3767 - 3827\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00023-024-01505-3.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Henri Poincaré\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00023-024-01505-3\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Henri Poincaré","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s00023-024-01505-3","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0
摘要
我们考虑在Gross-Pitaevskii极限下的均匀玻色气体,其温度与玻色-爱因斯坦凝聚的临界温度相当。最近,Boccato et al. (SIAM J Math, 56(2): 2611-2660, 2024)证明了大正则自由能的上界,获得了两个新的贡献。首先,用描述凝聚态粒子数目概率分布的有效理论给出了相互作用凝聚态的自由能。其次,热激发粒子的自由能等于与温度相关的波格留博夫哈密顿量的自由能。我们将这一结果推广到更一般的相互作用势,包括与硬核的相互作用。我们的证明采用了与Boccato等人不同的方法(SIAM J Math Anal 56(2):2611 - 2660,2024):我们通过Jastrow因子模拟粒子之间的微观相关性,并在计算由于系统中不同长度尺度而出现的能量时利用抵消。
Upper Bound for the Grand Canonical Free Energy of the Bose Gas in the Gross–Pitaevskii Limit for General Interaction Potentials
We consider a homogeneous Bose gas in the Gross–Pitaevskii limit at temperatures that are comparable to the critical temperature for Bose–Einstein condensation. Recently, an upper bound for the grand canonical free energy was proved in Boccato et al. (SIAM J Math Anal 56(2):2611–2660, 2024) capturing two novel contributions. First, the free energy of the interacting condensate is given in terms of an effective theory describing the probability distribution of the number of condensed particles. Second, the free energy of the thermally excited particles equals that of a temperature-dependent Bogoliubov Hamiltonian. We extend this result to a more general class of interaction potentials, including interactions with a hard core. Our proof follows a different approach than the one in Boccato et al. (SIAM J Math Anal 56(2):2611–2660, 2024): We model microscopic correlations between the particles by a Jastrow factor and exploit a cancellation in the computation of the energy that emerges due to the different length scales in the system.
期刊介绍:
The two journals Annales de l''Institut Henri Poincaré, physique théorique and Helvetica Physical Acta merged into a single new journal under the name Annales Henri Poincaré - A Journal of Theoretical and Mathematical Physics edited jointly by the Institut Henri Poincaré and by the Swiss Physical Society.
The goal of the journal is to serve the international scientific community in theoretical and mathematical physics by collecting and publishing original research papers meeting the highest professional standards in the field. The emphasis will be on analytical theoretical and mathematical physics in a broad sense.