具有大周期势的Schrödinger算子的慢传播速度

IF 1.3 3区 物理与天体物理 Q2 PHYSICS, MATHEMATICAL
Houssam Abdul-Rahman, Mohammed Darras, Christoph Fischbacher, Günter Stolz
{"title":"具有大周期势的Schrödinger算子的慢传播速度","authors":"Houssam Abdul-Rahman,&nbsp;Mohammed Darras,&nbsp;Christoph Fischbacher,&nbsp;Günter Stolz","doi":"10.1007/s00023-024-01520-4","DOIUrl":null,"url":null,"abstract":"<div><p>Schrödinger operators with periodic potential have generally been shown to exhibit ballistic transport. In this work, we investigate whether the propagation velocity, while positive, can be made arbitrarily small by a suitable choice of the periodic potential. We consider the discrete one-dimensional Schrödinger operator <span>\\(\\Delta +\\mu V\\)</span>, where <span>\\(\\Delta \\)</span> is the discrete Laplacian, <i>V</i> is a <i>p</i>-periodic non-degenerate potential and <span>\\(\\mu &gt;0\\)</span>. We establish a Lieb–Robinson-type bound with a group velocity that scales like <span>\\(\\mathcal {O}(1/\\mu )\\)</span> as <span>\\(\\mu \\rightarrow \\infty \\)</span>. This shows the existence of a linear light cone with a maximum velocity of quantum propagation that is decaying at a rate proportional to <span>\\(1/\\mu \\)</span>. Furthermore, we prove that the asymptotic velocity, or the average velocity of the time-evolved state, exhibits a decay proportional to <span>\\(\\mathcal {O}(1/\\mu ^{p-1})\\)</span> as <span>\\(\\mu \\rightarrow \\infty \\)</span>.\n</p></div>","PeriodicalId":463,"journal":{"name":"Annales Henri Poincaré","volume":"26 10","pages":"3635 - 3663"},"PeriodicalIF":1.3000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Slow Propagation Velocities in Schrödinger Operators with Large Periodic Potential\",\"authors\":\"Houssam Abdul-Rahman,&nbsp;Mohammed Darras,&nbsp;Christoph Fischbacher,&nbsp;Günter Stolz\",\"doi\":\"10.1007/s00023-024-01520-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Schrödinger operators with periodic potential have generally been shown to exhibit ballistic transport. In this work, we investigate whether the propagation velocity, while positive, can be made arbitrarily small by a suitable choice of the periodic potential. We consider the discrete one-dimensional Schrödinger operator <span>\\\\(\\\\Delta +\\\\mu V\\\\)</span>, where <span>\\\\(\\\\Delta \\\\)</span> is the discrete Laplacian, <i>V</i> is a <i>p</i>-periodic non-degenerate potential and <span>\\\\(\\\\mu &gt;0\\\\)</span>. We establish a Lieb–Robinson-type bound with a group velocity that scales like <span>\\\\(\\\\mathcal {O}(1/\\\\mu )\\\\)</span> as <span>\\\\(\\\\mu \\\\rightarrow \\\\infty \\\\)</span>. This shows the existence of a linear light cone with a maximum velocity of quantum propagation that is decaying at a rate proportional to <span>\\\\(1/\\\\mu \\\\)</span>. Furthermore, we prove that the asymptotic velocity, or the average velocity of the time-evolved state, exhibits a decay proportional to <span>\\\\(\\\\mathcal {O}(1/\\\\mu ^{p-1})\\\\)</span> as <span>\\\\(\\\\mu \\\\rightarrow \\\\infty \\\\)</span>.\\n</p></div>\",\"PeriodicalId\":463,\"journal\":{\"name\":\"Annales Henri Poincaré\",\"volume\":\"26 10\",\"pages\":\"3635 - 3663\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Henri Poincaré\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00023-024-01520-4\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Henri Poincaré","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s00023-024-01520-4","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

Schrödinger具有周期势的算符通常表现为弹道输运。在这项工作中,我们研究了当传播速度为正时,是否可以通过适当选择周期势而使其任意小。我们考虑离散一维Schrödinger算子\(\Delta +\mu V\),其中\(\Delta \)是离散拉普拉斯算子,V是p周期非简并势,\(\mu >0\)。我们建立了一个lieb - robinson型边界,其群速度的尺度类似于\(\mathcal {O}(1/\mu )\)和\(\mu \rightarrow \infty \)。这表明存在一个线性光锥,其量子传播的最大速度以与\(1/\mu \)成比例的速率衰减。此外,我们证明了渐近速度,或时间演化状态的平均速度,呈现出与\(\mathcal {O}(1/\mu ^{p-1})\)成比例的衰减,为\(\mu \rightarrow \infty \)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Slow Propagation Velocities in Schrödinger Operators with Large Periodic Potential

Schrödinger operators with periodic potential have generally been shown to exhibit ballistic transport. In this work, we investigate whether the propagation velocity, while positive, can be made arbitrarily small by a suitable choice of the periodic potential. We consider the discrete one-dimensional Schrödinger operator \(\Delta +\mu V\), where \(\Delta \) is the discrete Laplacian, V is a p-periodic non-degenerate potential and \(\mu >0\). We establish a Lieb–Robinson-type bound with a group velocity that scales like \(\mathcal {O}(1/\mu )\) as \(\mu \rightarrow \infty \). This shows the existence of a linear light cone with a maximum velocity of quantum propagation that is decaying at a rate proportional to \(1/\mu \). Furthermore, we prove that the asymptotic velocity, or the average velocity of the time-evolved state, exhibits a decay proportional to \(\mathcal {O}(1/\mu ^{p-1})\) as \(\mu \rightarrow \infty \).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annales Henri Poincaré
Annales Henri Poincaré 物理-物理:粒子与场物理
CiteScore
3.00
自引率
6.70%
发文量
108
审稿时长
6-12 weeks
期刊介绍: The two journals Annales de l''Institut Henri Poincaré, physique théorique and Helvetica Physical Acta merged into a single new journal under the name Annales Henri Poincaré - A Journal of Theoretical and Mathematical Physics edited jointly by the Institut Henri Poincaré and by the Swiss Physical Society. The goal of the journal is to serve the international scientific community in theoretical and mathematical physics by collecting and publishing original research papers meeting the highest professional standards in the field. The emphasis will be on analytical theoretical and mathematical physics in a broad sense.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信