从轨道磁性到体边对应

IF 1.3 3区 物理与天体物理 Q2 PHYSICS, MATHEMATICAL
Horia D. Cornean, Massimo Moscolari, Stefan Teufel
{"title":"从轨道磁性到体边对应","authors":"Horia D. Cornean,&nbsp;Massimo Moscolari,&nbsp;Stefan Teufel","doi":"10.1007/s00023-024-01501-7","DOIUrl":null,"url":null,"abstract":"<div><p>By extending the gauge covariant magnetic perturbation theory to operators defined on half-planes, we prove that for 2<i>d</i> random ergodic magnetic Schrödinger operators, the zero-temperature bulk-edge correspondence can be obtained from a general bulk-edge duality at positive temperature involving the bulk magnetization and the total edge current. Our main result is encapsulated in a formula, which states that the derivative of a large class of bulk partition functions with respect to the external constant magnetic field equals the expectation of a corresponding edge distribution function of the velocity component which is parallel to the edge. Neither spectral gaps, nor mobility gaps, nor topological arguments are required. The equality between the bulk and edge indices, as stated by the conventional bulk-edge correspondence, is obtained as a corollary of our purely analytical arguments by imposing a gap condition and by taking a “zero-temperature” limit.</p></div>","PeriodicalId":463,"journal":{"name":"Annales Henri Poincaré","volume":"26 10","pages":"3579 - 3633"},"PeriodicalIF":1.3000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"From Orbital Magnetism to Bulk-Edge Correspondence\",\"authors\":\"Horia D. Cornean,&nbsp;Massimo Moscolari,&nbsp;Stefan Teufel\",\"doi\":\"10.1007/s00023-024-01501-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>By extending the gauge covariant magnetic perturbation theory to operators defined on half-planes, we prove that for 2<i>d</i> random ergodic magnetic Schrödinger operators, the zero-temperature bulk-edge correspondence can be obtained from a general bulk-edge duality at positive temperature involving the bulk magnetization and the total edge current. Our main result is encapsulated in a formula, which states that the derivative of a large class of bulk partition functions with respect to the external constant magnetic field equals the expectation of a corresponding edge distribution function of the velocity component which is parallel to the edge. Neither spectral gaps, nor mobility gaps, nor topological arguments are required. The equality between the bulk and edge indices, as stated by the conventional bulk-edge correspondence, is obtained as a corollary of our purely analytical arguments by imposing a gap condition and by taking a “zero-temperature” limit.</p></div>\",\"PeriodicalId\":463,\"journal\":{\"name\":\"Annales Henri Poincaré\",\"volume\":\"26 10\",\"pages\":\"3579 - 3633\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Henri Poincaré\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00023-024-01501-7\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Henri Poincaré","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s00023-024-01501-7","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

通过将规范协变磁摄动理论推广到半平面上定义的算子,证明了对于二维随机遍历磁Schrödinger算子,在正温度下的一般体边对偶可以得到体磁化强度和总边电流的零温度体边对应。我们的主要结果被封装在一个公式中,该公式表明,一大类体配分函数对外部恒定磁场的导数等于平行于边缘的速度分量的相应边缘分布函数的期望。既不需要谱间隙,也不需要迁移率间隙,也不需要拓扑参数。由传统的体积-边缘对应所表述的体积指数和边缘指数之间的相等,是通过施加间隙条件和取“零温度”极限,作为纯解析论证的一个推论而得到的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
From Orbital Magnetism to Bulk-Edge Correspondence

By extending the gauge covariant magnetic perturbation theory to operators defined on half-planes, we prove that for 2d random ergodic magnetic Schrödinger operators, the zero-temperature bulk-edge correspondence can be obtained from a general bulk-edge duality at positive temperature involving the bulk magnetization and the total edge current. Our main result is encapsulated in a formula, which states that the derivative of a large class of bulk partition functions with respect to the external constant magnetic field equals the expectation of a corresponding edge distribution function of the velocity component which is parallel to the edge. Neither spectral gaps, nor mobility gaps, nor topological arguments are required. The equality between the bulk and edge indices, as stated by the conventional bulk-edge correspondence, is obtained as a corollary of our purely analytical arguments by imposing a gap condition and by taking a “zero-temperature” limit.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annales Henri Poincaré
Annales Henri Poincaré 物理-物理:粒子与场物理
CiteScore
3.00
自引率
6.70%
发文量
108
审稿时长
6-12 weeks
期刊介绍: The two journals Annales de l''Institut Henri Poincaré, physique théorique and Helvetica Physical Acta merged into a single new journal under the name Annales Henri Poincaré - A Journal of Theoretical and Mathematical Physics edited jointly by the Institut Henri Poincaré and by the Swiss Physical Society. The goal of the journal is to serve the international scientific community in theoretical and mathematical physics by collecting and publishing original research papers meeting the highest professional standards in the field. The emphasis will be on analytical theoretical and mathematical physics in a broad sense.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信