Horia D. Cornean, Massimo Moscolari, Stefan Teufel
{"title":"从轨道磁性到体边对应","authors":"Horia D. Cornean, Massimo Moscolari, Stefan Teufel","doi":"10.1007/s00023-024-01501-7","DOIUrl":null,"url":null,"abstract":"<div><p>By extending the gauge covariant magnetic perturbation theory to operators defined on half-planes, we prove that for 2<i>d</i> random ergodic magnetic Schrödinger operators, the zero-temperature bulk-edge correspondence can be obtained from a general bulk-edge duality at positive temperature involving the bulk magnetization and the total edge current. Our main result is encapsulated in a formula, which states that the derivative of a large class of bulk partition functions with respect to the external constant magnetic field equals the expectation of a corresponding edge distribution function of the velocity component which is parallel to the edge. Neither spectral gaps, nor mobility gaps, nor topological arguments are required. The equality between the bulk and edge indices, as stated by the conventional bulk-edge correspondence, is obtained as a corollary of our purely analytical arguments by imposing a gap condition and by taking a “zero-temperature” limit.</p></div>","PeriodicalId":463,"journal":{"name":"Annales Henri Poincaré","volume":"26 10","pages":"3579 - 3633"},"PeriodicalIF":1.3000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"From Orbital Magnetism to Bulk-Edge Correspondence\",\"authors\":\"Horia D. Cornean, Massimo Moscolari, Stefan Teufel\",\"doi\":\"10.1007/s00023-024-01501-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>By extending the gauge covariant magnetic perturbation theory to operators defined on half-planes, we prove that for 2<i>d</i> random ergodic magnetic Schrödinger operators, the zero-temperature bulk-edge correspondence can be obtained from a general bulk-edge duality at positive temperature involving the bulk magnetization and the total edge current. Our main result is encapsulated in a formula, which states that the derivative of a large class of bulk partition functions with respect to the external constant magnetic field equals the expectation of a corresponding edge distribution function of the velocity component which is parallel to the edge. Neither spectral gaps, nor mobility gaps, nor topological arguments are required. The equality between the bulk and edge indices, as stated by the conventional bulk-edge correspondence, is obtained as a corollary of our purely analytical arguments by imposing a gap condition and by taking a “zero-temperature” limit.</p></div>\",\"PeriodicalId\":463,\"journal\":{\"name\":\"Annales Henri Poincaré\",\"volume\":\"26 10\",\"pages\":\"3579 - 3633\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Henri Poincaré\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00023-024-01501-7\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Henri Poincaré","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s00023-024-01501-7","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
From Orbital Magnetism to Bulk-Edge Correspondence
By extending the gauge covariant magnetic perturbation theory to operators defined on half-planes, we prove that for 2d random ergodic magnetic Schrödinger operators, the zero-temperature bulk-edge correspondence can be obtained from a general bulk-edge duality at positive temperature involving the bulk magnetization and the total edge current. Our main result is encapsulated in a formula, which states that the derivative of a large class of bulk partition functions with respect to the external constant magnetic field equals the expectation of a corresponding edge distribution function of the velocity component which is parallel to the edge. Neither spectral gaps, nor mobility gaps, nor topological arguments are required. The equality between the bulk and edge indices, as stated by the conventional bulk-edge correspondence, is obtained as a corollary of our purely analytical arguments by imposing a gap condition and by taking a “zero-temperature” limit.
期刊介绍:
The two journals Annales de l''Institut Henri Poincaré, physique théorique and Helvetica Physical Acta merged into a single new journal under the name Annales Henri Poincaré - A Journal of Theoretical and Mathematical Physics edited jointly by the Institut Henri Poincaré and by the Swiss Physical Society.
The goal of the journal is to serve the international scientific community in theoretical and mathematical physics by collecting and publishing original research papers meeting the highest professional standards in the field. The emphasis will be on analytical theoretical and mathematical physics in a broad sense.