上时间拟周期哈密顿算子的wanner - stark局部化 \(\mathbb {Z}\)

IF 1.3 3区 物理与天体物理 Q2 PHYSICS, MATHEMATICAL
Shengqing Hu, Yingte Sun
{"title":"上时间拟周期哈密顿算子的wanner - stark局部化 \\(\\mathbb {Z}\\)","authors":"Shengqing Hu,&nbsp;Yingte Sun","doi":"10.1007/s00023-024-01533-z","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we consider the time (quasi)-periodic quantum Hamiltonian of the form <span>\\(\\textrm{H}(t)=\\textrm{H}_\\gamma +\\textrm{V}(\\omega t)\\)</span>, where <span>\\(\\textrm{H}_\\gamma \\)</span> is a power-law long-range lattice operator with uniform electric fields on <span>\\(\\mathbb {Z}\\)</span>, <span>\\(\\textrm{V}(\\omega t)\\)</span> is a time quasi-periodic perturbation. In particular, we can obtain the uniform power-law localization of the Floquet Hamiltonian operator <span>\\(-{\\textbf{i}}\\omega \\cdot \\partial _{\\phi }+\\textrm{H}(\\phi )\\)</span>, and the dynamical localization of the Hamiltonian operator <span>\\(\\textrm{H}(t)\\)</span>. No assumptions are made on the size of the perturbation; however, we require the time quasi-periodic perturbation is a <b>“quasi-Töplitz” operator</b> (close to a Töplitz operator).</p></div>","PeriodicalId":463,"journal":{"name":"Annales Henri Poincaré","volume":"26 10","pages":"3739 - 3766"},"PeriodicalIF":1.3000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wannier–Stark Localization for Time Quasi-Periodic Hamiltonian Operator on \\\\(\\\\mathbb {Z}\\\\)\",\"authors\":\"Shengqing Hu,&nbsp;Yingte Sun\",\"doi\":\"10.1007/s00023-024-01533-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we consider the time (quasi)-periodic quantum Hamiltonian of the form <span>\\\\(\\\\textrm{H}(t)=\\\\textrm{H}_\\\\gamma +\\\\textrm{V}(\\\\omega t)\\\\)</span>, where <span>\\\\(\\\\textrm{H}_\\\\gamma \\\\)</span> is a power-law long-range lattice operator with uniform electric fields on <span>\\\\(\\\\mathbb {Z}\\\\)</span>, <span>\\\\(\\\\textrm{V}(\\\\omega t)\\\\)</span> is a time quasi-periodic perturbation. In particular, we can obtain the uniform power-law localization of the Floquet Hamiltonian operator <span>\\\\(-{\\\\textbf{i}}\\\\omega \\\\cdot \\\\partial _{\\\\phi }+\\\\textrm{H}(\\\\phi )\\\\)</span>, and the dynamical localization of the Hamiltonian operator <span>\\\\(\\\\textrm{H}(t)\\\\)</span>. No assumptions are made on the size of the perturbation; however, we require the time quasi-periodic perturbation is a <b>“quasi-Töplitz” operator</b> (close to a Töplitz operator).</p></div>\",\"PeriodicalId\":463,\"journal\":{\"name\":\"Annales Henri Poincaré\",\"volume\":\"26 10\",\"pages\":\"3739 - 3766\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Henri Poincaré\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00023-024-01533-z\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Henri Poincaré","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s00023-024-01533-z","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文考虑了形式为\(\textrm{H}(t)=\textrm{H}_\gamma +\textrm{V}(\omega t)\)的时间(拟)周期量子哈密顿量,其中\(\textrm{H}_\gamma \)是\(\mathbb {Z}\)上具有均匀电场的幂律远程晶格算子,\(\textrm{V}(\omega t)\)是时间拟周期扰动。特别地,我们可以得到Floquet hamilton算子\(-{\textbf{i}}\omega \cdot \partial _{\phi }+\textrm{H}(\phi )\)的一致幂律局部化,以及hamilton算子\(\textrm{H}(t)\)的动态局部化。没有对扰动的大小作任何假设;然而,我们要求时间准周期扰动是一个“quasi-Töplitz”算子(接近于Töplitz算子)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Wannier–Stark Localization for Time Quasi-Periodic Hamiltonian Operator on \(\mathbb {Z}\)

In this paper, we consider the time (quasi)-periodic quantum Hamiltonian of the form \(\textrm{H}(t)=\textrm{H}_\gamma +\textrm{V}(\omega t)\), where \(\textrm{H}_\gamma \) is a power-law long-range lattice operator with uniform electric fields on \(\mathbb {Z}\), \(\textrm{V}(\omega t)\) is a time quasi-periodic perturbation. In particular, we can obtain the uniform power-law localization of the Floquet Hamiltonian operator \(-{\textbf{i}}\omega \cdot \partial _{\phi }+\textrm{H}(\phi )\), and the dynamical localization of the Hamiltonian operator \(\textrm{H}(t)\). No assumptions are made on the size of the perturbation; however, we require the time quasi-periodic perturbation is a “quasi-Töplitz” operator (close to a Töplitz operator).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annales Henri Poincaré
Annales Henri Poincaré 物理-物理:粒子与场物理
CiteScore
3.00
自引率
6.70%
发文量
108
审稿时长
6-12 weeks
期刊介绍: The two journals Annales de l''Institut Henri Poincaré, physique théorique and Helvetica Physical Acta merged into a single new journal under the name Annales Henri Poincaré - A Journal of Theoretical and Mathematical Physics edited jointly by the Institut Henri Poincaré and by the Swiss Physical Society. The goal of the journal is to serve the international scientific community in theoretical and mathematical physics by collecting and publishing original research papers meeting the highest professional standards in the field. The emphasis will be on analytical theoretical and mathematical physics in a broad sense.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信