PARP1的自动修改促进了忠实的冈崎片段处理,并限制了复制叉的速度

IF 16.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Jonas D. Elsborg, Sebastian H.N. Munk, Alba Adelantado-Rubio, Ramóna Pék, Zita Fábian, Victor Imburchia, Siham Zentout, Ivo A. Hendriks, Sara C. Buch-Larsen, Rebecca Smith, Jiri Bartek, Julien P. Duxin, Sébastien Huet, Apolinar Maya-Mendoza, Michael L. Nielsen
{"title":"PARP1的自动修改促进了忠实的冈崎片段处理,并限制了复制叉的速度","authors":"Jonas D. Elsborg, Sebastian H.N. Munk, Alba Adelantado-Rubio, Ramóna Pék, Zita Fábian, Victor Imburchia, Siham Zentout, Ivo A. Hendriks, Sara C. Buch-Larsen, Rebecca Smith, Jiri Bartek, Julien P. Duxin, Sébastien Huet, Apolinar Maya-Mendoza, Michael L. Nielsen","doi":"10.1016/j.molcel.2025.09.006","DOIUrl":null,"url":null,"abstract":"Poly(ADP-ribose) polymerase (PARP) inhibitors have proven their efficacy for treating tumors defective in homologous recombination via synthetic lethality. In response to DNA breaks, PARP1 is the primary ADP-ribosylation writer, modifying itself (auto-modification) and other proteins to facilitate repair. However, enzymatic inhibition blocks both processes, making it difficult to dissect their distinct functional roles. Using proteomics and site-directed mutagenesis, we identified a PARP1 mutant deficient in auto-modification, yet it retains catalytic activity. This separation-of-function mutant revealed that PARP1 auto-modification slows DNA replication fork progression but is dispensable for repair factor recruitment. Instead, auto-modification promotes the timely release of PARP1 at DNA break sites and prevents the formation of replication stress. Simultaneous inhibition of FEN1 and loss of PARP1 auto-modification gives rise to synthetic lethality, implicating auto-modification in Okazaki fragment processing. Our results demonstrate that trapping of PARP at DNA breaks impedes repair factor accessibility, constituting an important dimension of PARP-inhibitor-driven cytotoxicity.","PeriodicalId":18950,"journal":{"name":"Molecular Cell","volume":"3 1","pages":""},"PeriodicalIF":16.6000,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PARP1 auto-modification promotes faithful Okazaki fragment processing and limits replication fork speed\",\"authors\":\"Jonas D. Elsborg, Sebastian H.N. Munk, Alba Adelantado-Rubio, Ramóna Pék, Zita Fábian, Victor Imburchia, Siham Zentout, Ivo A. Hendriks, Sara C. Buch-Larsen, Rebecca Smith, Jiri Bartek, Julien P. Duxin, Sébastien Huet, Apolinar Maya-Mendoza, Michael L. Nielsen\",\"doi\":\"10.1016/j.molcel.2025.09.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Poly(ADP-ribose) polymerase (PARP) inhibitors have proven their efficacy for treating tumors defective in homologous recombination via synthetic lethality. In response to DNA breaks, PARP1 is the primary ADP-ribosylation writer, modifying itself (auto-modification) and other proteins to facilitate repair. However, enzymatic inhibition blocks both processes, making it difficult to dissect their distinct functional roles. Using proteomics and site-directed mutagenesis, we identified a PARP1 mutant deficient in auto-modification, yet it retains catalytic activity. This separation-of-function mutant revealed that PARP1 auto-modification slows DNA replication fork progression but is dispensable for repair factor recruitment. Instead, auto-modification promotes the timely release of PARP1 at DNA break sites and prevents the formation of replication stress. Simultaneous inhibition of FEN1 and loss of PARP1 auto-modification gives rise to synthetic lethality, implicating auto-modification in Okazaki fragment processing. Our results demonstrate that trapping of PARP at DNA breaks impedes repair factor accessibility, constituting an important dimension of PARP-inhibitor-driven cytotoxicity.\",\"PeriodicalId\":18950,\"journal\":{\"name\":\"Molecular Cell\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":16.6000,\"publicationDate\":\"2025-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Cell\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.molcel.2025.09.006\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.molcel.2025.09.006","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

聚(adp -核糖)聚合酶(PARP)抑制剂通过合成致死性治疗同源重组有缺陷的肿瘤已被证明有疗效。在DNA断裂的反应中,PARP1是主要的adp -核糖基化书写者,修饰自身(自修饰)和其他蛋白质以促进修复。然而,酶抑制阻断了这两个过程,使得很难解剖它们不同的功能角色。利用蛋白质组学和定点诱变技术,我们发现了一个PARP1突变体缺乏自修饰,但它保持了催化活性。这种功能分离突变表明,PARP1的自修饰减缓了DNA复制叉的进展,但对于修复因子的募集是必不可少的。相反,自修饰促进PARP1在DNA断裂位点的及时释放,防止复制应激的形成。同时抑制FEN1和丧失PARP1自修饰可导致合成致死性,暗示了冈崎片段加工中的自修饰。我们的研究结果表明,PARP在DNA断裂处的捕获阻碍了修复因子的可及性,这是PARP抑制剂驱动的细胞毒性的一个重要方面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

PARP1 auto-modification promotes faithful Okazaki fragment processing and limits replication fork speed

PARP1 auto-modification promotes faithful Okazaki fragment processing and limits replication fork speed
Poly(ADP-ribose) polymerase (PARP) inhibitors have proven their efficacy for treating tumors defective in homologous recombination via synthetic lethality. In response to DNA breaks, PARP1 is the primary ADP-ribosylation writer, modifying itself (auto-modification) and other proteins to facilitate repair. However, enzymatic inhibition blocks both processes, making it difficult to dissect their distinct functional roles. Using proteomics and site-directed mutagenesis, we identified a PARP1 mutant deficient in auto-modification, yet it retains catalytic activity. This separation-of-function mutant revealed that PARP1 auto-modification slows DNA replication fork progression but is dispensable for repair factor recruitment. Instead, auto-modification promotes the timely release of PARP1 at DNA break sites and prevents the formation of replication stress. Simultaneous inhibition of FEN1 and loss of PARP1 auto-modification gives rise to synthetic lethality, implicating auto-modification in Okazaki fragment processing. Our results demonstrate that trapping of PARP at DNA breaks impedes repair factor accessibility, constituting an important dimension of PARP-inhibitor-driven cytotoxicity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Cell
Molecular Cell 生物-生化与分子生物学
CiteScore
26.00
自引率
3.80%
发文量
389
审稿时长
1 months
期刊介绍: Molecular Cell is a companion to Cell, the leading journal of biology and the highest-impact journal in the world. Launched in December 1997 and published monthly. Molecular Cell is dedicated to publishing cutting-edge research in molecular biology, focusing on fundamental cellular processes. The journal encompasses a wide range of topics, including DNA replication, recombination, and repair; Chromatin biology and genome organization; Transcription; RNA processing and decay; Non-coding RNA function; Translation; Protein folding, modification, and quality control; Signal transduction pathways; Cell cycle and checkpoints; Cell death; Autophagy; Metabolism.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信