{"title":"交流最优潮流的鲁棒增广商梯度系统方法第一部分:理论基础","authors":"Zhi-Yuan Wang, Hsiao-Dong Chiang, Tengmu Li, Xian-Long Lv","doi":"10.1109/tpwrs.2025.3616147","DOIUrl":null,"url":null,"abstract":"","PeriodicalId":13373,"journal":{"name":"IEEE Transactions on Power Systems","volume":"115 1","pages":""},"PeriodicalIF":7.2000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Novel Robust Augmented Quotient Gradient System Method for AC Optimal Power Flow Part I: Theoretical Basis\",\"authors\":\"Zhi-Yuan Wang, Hsiao-Dong Chiang, Tengmu Li, Xian-Long Lv\",\"doi\":\"10.1109/tpwrs.2025.3616147\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\",\"PeriodicalId\":13373,\"journal\":{\"name\":\"IEEE Transactions on Power Systems\",\"volume\":\"115 1\",\"pages\":\"\"},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Power Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1109/tpwrs.2025.3616147\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Power Systems","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/tpwrs.2025.3616147","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
期刊介绍:
The scope of IEEE Transactions on Power Systems covers the education, analysis, operation, planning, and economics of electric generation, transmission, and distribution systems for general industrial, commercial, public, and domestic consumption, including the interaction with multi-energy carriers. The focus of this transactions is the power system from a systems viewpoint instead of components of the system. It has five (5) key areas within its scope with several technical topics within each area. These areas are: (1) Power Engineering Education, (2) Power System Analysis, Computing, and Economics, (3) Power System Dynamic Performance, (4) Power System Operations, and (5) Power System Planning and Implementation.