混合:概率细胞反卷积与个体化单细胞参考积分

IF 10.1 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Penghui Huang, Manqi Cai, Chris McKennan, Jiebiao Wang
{"title":"混合:概率细胞反卷积与个体化单细胞参考积分","authors":"Penghui Huang, Manqi Cai, Chris McKennan, Jiebiao Wang","doi":"10.1186/s13059-025-03765-6","DOIUrl":null,"url":null,"abstract":"Cellular deconvolution estimates cell-type fractions from bulk transcriptomic data, but current methods often overlook cell type-specific expression varying across samples, discrepancies between bulk and single-cell data, or lack guidance on reference data selection and integration. Therefore, we present BLEND, a hierarchical Bayesian method that leverages multiple single-cell reference datasets to perform cellular deconvolution. BLEND estimates cellular fractions accurately by learning the most suitable reference for each bulk sample, accounting for the aforementioned issues. BLEND outperforms state-of-the-art methods in comprehensive benchmarking studies using human brain cortex data and provides reliable insights into Alzheimer’s disease progression.","PeriodicalId":12611,"journal":{"name":"Genome Biology","volume":"114 1","pages":""},"PeriodicalIF":10.1000,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"BLEND: probabilistic cellular deconvolution with individualized single-cell reference integration\",\"authors\":\"Penghui Huang, Manqi Cai, Chris McKennan, Jiebiao Wang\",\"doi\":\"10.1186/s13059-025-03765-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cellular deconvolution estimates cell-type fractions from bulk transcriptomic data, but current methods often overlook cell type-specific expression varying across samples, discrepancies between bulk and single-cell data, or lack guidance on reference data selection and integration. Therefore, we present BLEND, a hierarchical Bayesian method that leverages multiple single-cell reference datasets to perform cellular deconvolution. BLEND estimates cellular fractions accurately by learning the most suitable reference for each bulk sample, accounting for the aforementioned issues. BLEND outperforms state-of-the-art methods in comprehensive benchmarking studies using human brain cortex data and provides reliable insights into Alzheimer’s disease progression.\",\"PeriodicalId\":12611,\"journal\":{\"name\":\"Genome Biology\",\"volume\":\"114 1\",\"pages\":\"\"},\"PeriodicalIF\":10.1000,\"publicationDate\":\"2025-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genome Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13059-025-03765-6\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13059-025-03765-6","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

细胞反褶积从大量转录组学数据中估计细胞类型分数,但目前的方法往往忽略了不同样本中细胞类型特异性表达的变化,大量和单细胞数据之间的差异,或者缺乏对参考数据选择和整合的指导。因此,我们提出了BLEND,这是一种分层贝叶斯方法,利用多个单细胞参考数据集来执行细胞反褶积。BLEND通过学习每个大样本最合适的参考来准确地估计细胞分数,考虑到上述问题。BLEND在使用人类大脑皮层数据的综合基准研究中优于最先进的方法,并为阿尔茨海默病的进展提供可靠的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
BLEND: probabilistic cellular deconvolution with individualized single-cell reference integration
Cellular deconvolution estimates cell-type fractions from bulk transcriptomic data, but current methods often overlook cell type-specific expression varying across samples, discrepancies between bulk and single-cell data, or lack guidance on reference data selection and integration. Therefore, we present BLEND, a hierarchical Bayesian method that leverages multiple single-cell reference datasets to perform cellular deconvolution. BLEND estimates cellular fractions accurately by learning the most suitable reference for each bulk sample, accounting for the aforementioned issues. BLEND outperforms state-of-the-art methods in comprehensive benchmarking studies using human brain cortex data and provides reliable insights into Alzheimer’s disease progression.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Genome Biology
Genome Biology Biochemistry, Genetics and Molecular Biology-Genetics
CiteScore
21.00
自引率
3.30%
发文量
241
审稿时长
2 months
期刊介绍: Genome Biology stands as a premier platform for exceptional research across all domains of biology and biomedicine, explored through a genomic and post-genomic lens. With an impressive impact factor of 12.3 (2022),* the journal secures its position as the 3rd-ranked research journal in the Genetics and Heredity category and the 2nd-ranked research journal in the Biotechnology and Applied Microbiology category by Thomson Reuters. Notably, Genome Biology holds the distinction of being the highest-ranked open-access journal in this category. Our dedicated team of highly trained in-house Editors collaborates closely with our esteemed Editorial Board of international experts, ensuring the journal remains on the forefront of scientific advances and community standards. Regular engagement with researchers at conferences and institute visits underscores our commitment to staying abreast of the latest developments in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信